Answer:
t = 6 [s]
Explanation:
In order to solve this problem we must first use this equation of kinematics.

where:
Vf = final velocity = 0 (the car comes to rest)
Vo = initial velocity = 72 [km/h]
a = acceleration [m/s²]
x = distance = 60 [m]
First we must convert the velocity from kilometers per hour to meters per second.
![72 [\frac{km}{h}]*\frac{1000m}{1km} *\frac{1h}{3600s} =20 [m/s]](https://tex.z-dn.net/?f=72%20%5B%5Cfrac%7Bkm%7D%7Bh%7D%5D%2A%5Cfrac%7B1000m%7D%7B1km%7D%20%2A%5Cfrac%7B1h%7D%7B3600s%7D%20%3D20%20%5Bm%2Fs%5D)
![0=(20)^{2} -2*a*60\\400 = 120*a\\a=3.33[m/s^{2} ]](https://tex.z-dn.net/?f=0%3D%2820%29%5E%7B2%7D%20-2%2Aa%2A60%5C%5C400%20%3D%20120%2Aa%5C%5Ca%3D3.33%5Bm%2Fs%5E%7B2%7D%20%5D)
Now using this other equation of kinematics.

0 = 20-3.33*t
t = 6[s]
Well I figured out at his current pace, he would finish the 1100 remaining meters in 200 seconds. However, he needs to complete it in 180 seconds. I'm not sure how to find out how long he has to accelerate at 0.20 m/s/s to complete it in 180 seconds.
Explanation:
Below is an attachment containing the solution.
Is this a multiple choice question?
If not, well then the answer is that the volcano sort of sinks into the ground. Like it sort of subducts.
Hope this helped!!!:)
<span />