Answer:
A. 28.42 m/s
B. 41.21 m.
Explanation:
A. Determination of the initial velocity of the ball:
Time (t) to reach the maximum height = 2.9 s
Final velocity (v) = 0 (at maximum height)
Acceleration due to gravity (g) = –9.8 m/s² (since the ball is going against gravity)
Initial velocity (u) =?
Thus, we can obtain the initial velocity of the ball as follow:
v = u + gt
0 = u + (–9.8 × 2.9)
0 = u – 28.42
Collect like terms
u = 0 + 28.42
u = 28.42 m/s
Therefore, the initial velocity of the ball is 28.42 m/s.
B. Determination of the maximum height reached.
Final velocity (v) = 0 (at maximum height)
Acceleration due to gravity (g) = –9.8 m/s² (since the ball is going against gravity)
Initial velocity (u) = 28.42 m/s.
Maximum height (h) =?
Thus, we can obtain the maximum height reached by the ball as follow:
v² = u² + 2gh
0² = 28.42² + (2 × –9.8 × h)
0 = 807.6964 + (–19.6h)
0 = 807.6964 – 19.6h
Collect like terms
0 – 807.6964 = – 19.6h
– 807.6964 = – 19.6h
Divide both side by – 19.6
h = –807.6964 / –19.6
h = 41.21 m
Therefore, the maximum height reached by the ball is 41.21 m
Answer:0.46
Explanation:
Given
Initial height 
inclination 
Thrust
combined mass of kieran and skis 
Speed at the bottom 
From Work Energy Theorem
Work done by all the force is equal to change in kinetic Energy
------------1
distance traveled along the slope 



substitute in 1




Answer: Conductor
Explanation: Because they do
<span>A large body of air hats has similar properties of a temperature and moisture is an air mass.</span>
Answer:
The ratio of the orbital time periods of A and B is 
Solution:
As per the question:
The orbit of the two satellites is circular
Also,
Orbital speed of A is 2 times the orbital speed of B
(1)
Now, we know that the orbital speed of a satellite for circular orbits is given by:

where
R = Radius of the orbit
Now,
For satellite A:

Using eqn (1):
(2)
For satellite B:
(3)
Now, comparing eqn (2) and eqn (3):
