Answer:
1.81 x 10^-4 m/s
Explanation:
M = 98700 kg
m = 780 kg
d = 201 m
Let the speed of second asteroid is v.
The gravitational force between the two asteroids is balanced by the centripetal force on the second asteroid.


Where, G be the universal gravitational constant.
G = 6.67 x 10^-11 Nm^2/kg^2

v = 1.81 x 10^-4 m/s
Answer:
216 m
Explanation:
Assuming a straight line:
Δx = vt
Δx = (12 m/s) (18 s)
Δx = 216 m
Answer:
w = 3.2 rev / min
Explanation:
For this exercise we will use the centrine acceleration equal to the acceleration of gravity
a = v² / r
Angular and linear variables are related.
v = w r
Let's replace
a = w² r = g
w = √ g / r
r = d / 2
r = 175/2 = 87.5 m
w = √( 9.8 / 87.5)
w = 0.3347 rad / s
Let's reduce to rotations per min
w = 0.3347 rad / s (1 rov / 2pi rad) (60 s / 1 min)
w = 3.2 rev / min
Suppose the space station rotates counterclockwise, we have two possibilities for the car
The first car turns counterclockwise (same direction of the station
=
r
[texwv_{c}[/tex] =
/ r
[texwv_{c}[/tex] = 25.0 / 87.5
[texwv_{c}[/tex] = 0.286 rad / s
When the two rotate in the same direction their angular speeds are subtracted
w total = w -[texwv_{c}[/tex]
w total = 0.3347 - 0.286
w total= 0.487 rad / s
The car goes in the opposite direction of the station the speeds add up
w = 0.3347 + 0.286
w = 0.62 rad / s
From this values we can see that the person feels a variation of the acceleration of gravity, feels that he has less weight when he goes in the same direction of the season and that his weight increases when he goes in the opposite direction to the season.
Answer:
a.96cm
b.77cm
Explanation:
Highest intensity,
=19cm
Lowest intensity,
=29cm
48cm is the distance for half-wave, wavelength =48cm*2=96cm
b. From a, above we know that half-wavelength is 48cm
Also, the distance of known maximum is 29cm
Next maximum is calculated as:

The next maximum will occur at 77cm