Look first for the relation between deBroglie wavelength (λ) and kinetic energy (K):
K = ½mv²
v = √(2K/m)
λ = h/(mv)
= h/(m√(2K/m))
= h/√(2Km)
So λ is proportional to 1/√K.
in the potential well the potential energy is zero, so completely the electron's energy is in the shape of kinetic energy:
K = 6U₀
Outer the potential well the potential energy is U₀, so
K = 5U₀
(because kinetic and potential energies add up to 6U₀)
Therefore, the ratio of the de Broglie wavelength of the electron in the region x>L (outside the well) to the wavelength for 0<x<L (inside the well) is:
1/√(5U₀) : 1/√(6U₀)
= √6 : √5
Answer:
If the temperature of the air in the balloon is less than the temperature of the air surrounding the balloon then the balloon will appear slightly deflated because of the difference in temperature.
As the temperature of the air in the balloon reaches the surrounding air temperature, then the balloon will appear to be fully inflated because the temperature of the air in the balloon is the same as the surrounding air temperature.
Density =mass/volume
density= (0.044kg/(11 x10^-6)
4000kg/m^3
Answer: The magnetic field of a bar magnet is strongest at either pole of the magnet. It is equally strong at the north pole compared with the south pole. The force is weaker in the middle of the magnet and halfway between the pole and the center. So it would be D.