They are arranged by their atomic mass.
Answer:
a. equal to
Explanation:
The <em>osmotic pressure</em> is calculated by the formula:
π = <em>i</em> * M * R * T
Where π is the osmotic pressure, M is the concentration, R is a constant, T is temperature and <em>i</em> is the van't Hoff's factor (the number of ions a compound forms when dissolved in water,<u> for both NaCl and KBr is 2</u>).
Because R is always the same, and <u>Temperature and Concentration are equal between the two solutions</u>, the osmotic pressure of both solutions are also equal.
The molar mass of citric acid (c6h8o7) is 192.124g/mol
The molar mass of baking soda (nahco3) is 84.007g/mol
The molar mass of a chemical compound is defined as the mass of a sample of that compound divided by the amount of substance in that sample and is measured in moles. Molar mass is a mass property, not a molecular property of a substance.
Molar mass is the mass of 1 mole of the sample. To find the molar mass, add up the atomic masses (atomic weights) of all the atoms in the molecule. Use the masses listed in the periodic table or atomic weight table to determine the atomic mass of each element.
Learn more about molar mass here:brainly.com/question/15476873
#SPJ1
The final temperature : 78.925°C
<h3>Further explanation </h3>
Heat can be calculated using the formula:
Q = mc∆T
Q = heat, J
m = mass, g
c = specific heat, joules / g ° C
∆T = temperature difference, ° C / K
Energy releases = 130 kcal = 130 x 4.18 kJ=543.4 kJ
The final temperature :

Final temperature :
ΔT=final-initial
51.925°c=final-27°c
final = 51.925+27=78.925°C
Answer:
The rate of acceleration is 5.
Explanation:
In order to calculate acceleration we need to divide the force by the mass.
Acceleration = net force/mass
In this case, it would be 20/4. Simplify that and we get 5.