I think the family of Group 2 metals are most likely to form a 2+ion.
Answer:
B) 7.7
Explanation:
For the reaction Ag2CO3(s) + CrO42‒(aq) → Ag2CrO4(s) + CO32‒(aq)
Kc = (CO₃²⁻) / (CrO₄²⁻)
and the Ksp given are
Ag₂CO₃ ⇒ 2 Ag⁺(aq) + CO₃²⁻(aq) Ksp₁ = (Ag⁺)²(CO₃²⁻)
Ag₂CrO₄ ⇒ 2 Ag⁺(aq)+ CrO₄²⁻(aq) Ksp₂ = (Ag⁺)²(CrO₄²⁻)
Where (...) indicate concentrations M
Notice if we divide the expressions for Ksp we get:
Ksp₁/Ksp₂ = (CO₃²⁻) / (CrO₄²⁻) = 8.5 x 10⁻¹² / 1.1 x 10⁻¹² = 7.7
which is the desired answer.
A space-filling model shows the relative amount of space each atom takes up. In other words, a space-filling model can show relative sizes of atoms. However, unlike ball-and-stick or structural models, space-filling models do not show bond lengths clearly. Bonds are not really like sticks in a ball-and-stick model.
an element's name, chemical symbol, atomic number, atomic mass.
IDK what you are even asking for