Answer:
See explanation
Explanation:
A double replacement reaction is a reaction where the atoms in the molecules replace each other to form two new molecules. However, if the products of the solution are soluble, then they could combine with the solution, and form a different set of products than expected.
Hope this helps!
Answer:
Heat absorbed by water = 3985.26 j
Explanation:
Given data:
Mass of water = 75 g
Initial temperature = 20.0°C
Final temperature = 32.7°C
Specific heat of water = 4.184 j/g.°C
Heat absorbed by water = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 32.7°C - 20°C
ΔT = 12.7 °C
Q = 75 g ×4.184 j/g.°C ×12.7 °C
Q = 3985.26 j
<u>Answer:</u> The molecular balanced equation is written below
<u>Explanation:</u>
A molecular equation is defined as the chemical equation in which the ionic compounds are written as molecules rather than component ions.
A balanced chemical equation is defined as the equation in which total number of individual atoms on the reactant side is equal to the total number of individual atoms on product side.
The balanced chemical equation for the decomposition of bromine trifluoride follows:

By Stoichiometry of the reaction:
2 moles of bromine trifluoride produces 1 mole of bromine gas and 3 moles of fluorine gas
Hence, the molecular balanced equation is written above.
Answer:
V = 5 cm³
ρ = 4 g/cm³
Explanation:
Step 1: Calculate the volume (V)
We have a wooden cuboid of dimensions 5 cm × 1 cm × 1 cm. We can calculate its volume using the following expression.
V = 5 cm × 1 cm × 1 cm
V = 5 cm³
Step 2: Calculate the density (ρ)
The density is equal to the mass divided by the volume.
ρ = m / V
ρ = 20 g / 5 cm³
ρ = 4 g/cm³