1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
m_a_m_a [10]
3 years ago
12

in the system to the right, the pulleys are frictionless and the system hangs in equilibrium. Determine the values of each of th

e unknown weights.

Physics
1 answer:
irga5000 [103]3 years ago
4 0
Look up pulleys problem through Khan academy and a video should pop up with a problem similar and you should be able to walk through it .
You might be interested in
Please help, i’ll give brainliest!!
mrs_skeptik [129]

Answer:

duty h gucuuvu h just hc i oicuxp o cut o icucj x uc jo 8cuc8c

5 0
3 years ago
3. According to the article, why did Europeans so quickly accept that the sun did move and change?
Sphinxa [80]

Answer:A

Explanation:because it is good

5 0
3 years ago
Read 2 more answers
The velocity of an object is equal to the distance divided by time. The equation is velocity = distance/time. If you wanted to c
Korolek [52]

Answer: C) divide: distance ÷ velocity

Explanation:

The velocity V equation is distance d divided by time t:

V=\frac{d}{t}

If we isolate t we will have:

t=\frac{d}{V}

Hence, the correct option is C: distance divided by velocity.

7 0
3 years ago
A 70mm long blockhas cross-section of 50mm by 10mm the block is subjected to forces 60KN (tension) on the 50mm by 10mm face and
sammy [17]

Answer:

970 kN

Explanation:

The length of the block = 70 mm

The cross section of the block = 50 mm by 10 mm

The tension force applies to the 50 mm by 10 mm face, F₁ = 60 kN

The compression force applied to the 70 mm by 10 mm face, F₂ = 110 kN

By volumetric stress, we have that for there to be no change in volume, the total pressure applied by the given applied forces should be equal to the pressure removed by the added applied force

The pressure due to the force F₁ = 60 kN/(50 mm × 10 mm) = 120 MPa

The pressure due to the force F₂ = 110 kN/(70 mm × 10 mm) = 157.142857 MPa

The total pressure applied to the block, P = 120 MPa + 157.142857 MPa = 277.142857 MPa

The required force, F₃ = 277.142857 MPa × (70 mm × 50 mm) = 970 kN

7 0
2 years ago
Two identical small metal spheres with q1 > 0 and |q1| > |q2| attract each other with a force of magnitude 72.1 mN when se
Brrunno [24]

1) +2.19\mu C

The electrostatic force between two charges is given by

F=k\frac{q_1 q_2}{r^2} (1)

where

k is the Coulomb's constant

q1, q2 are the two charges

r is the separation between the charges

When the two spheres are brought in contact with each other, the charge equally redistribute among the two spheres, such that each sphere will have a charge of

\frac{Q}{2}

where Q is the total charge between the two spheres.

So we can actually rewrite the force as

F=k\frac{(\frac{Q}{2})^2}{r^2}

And since we know that

r = 1.41 m (distance between the spheres)

F= 21.63 mN = 0.02163 N

(the sign is positive since the charges repel each other)

We can solve the equation for Q:

Q=2\sqrt{\frac{Fr^2}{k}}=2\sqrt{\frac{(0.02163)(1.41)^2}{8.98755\cdot 10^9}}}=4.37\cdot 10^{-6} C

So, the final charge on the sphere on the right is

\frac{Q}{2}=\frac{4.37\cdot 10^{-6} C}{2}=2.19\cdot 10^{-6}C=+2.19\mu C

2) q_1 = +6.70 \mu C

Now we know the total charge initially on the two spheres. Moreover, at the beginning we know that

F = -72.1 mN = -0.0721 N (we put a negative sign since the force is attractive, which means that the charges have opposite signs)

r = 1.41 m is the separation between the charges

And also,

q_2 = Q-q_1

So we can rewrite eq.(1) as

F=k \frac{q_1 (Q-q_1)}{r^2}

Solving for q1,

Fr^2=k (q_1 Q-q_1^2})\\kq_1^2 -kQ q_1 +Fr^2 = 0

Since Q=4.37\cdot 10^{-6} C, we can substituting all numbers into the equation:

8.98755\cdot 10^9 q_1^2 -3.93\cdot 10^4 q_1 -0.141 = 0

which gives two solutions:

q_1 = 6.70\cdot 10^{-6} C\\q_2 = -2.34\cdot 10^{-6} C

Which correspond to the values of the two charges. Therefore, the initial charge q1 on the first sphere is

q_1 = +6.70 \mu C

8 0
3 years ago
Other questions:
  • Four penguins that are being playfully pulled along very slippery (frictionless) ice by a curator. The masses of three penguins
    5·1 answer
  • The floor leader of the major party that holds fewer seats in a house of congress is called _____. 1.the speaker of the house 2.
    9·2 answers
  • A polystyrene component must not fail when a tensile stress of 1.25 MPa (180 psi) is applied. Determine the maximum allowable su
    14·2 answers
  • cylinder of mass 6.0 kg rolls without slipping on a horizontal surface. At a certain instant its center of mass has a speed of 1
    7·1 answer
  • A driver in a car traveling at a speed of 21.8 m/s sees a cat 101m away on the road. How long will it take for the car to accele
    7·1 answer
  • According to Kepler's third law (p2 = a3), how does a planet's mass affect its orbit around the Sun? Group of answer choices
    7·1 answer
  • Imagine that you move a substance from one container to another and it's volume changes, what state of matter is that substance?
    6·1 answer
  • In what do electromagnetic waves cause disturbances when they transfer<br> energy?
    12·2 answers
  • A 06-C charge and a 07-C charge are apart at 3 m apart. What force attracts them?​
    5·1 answer
  • In un lento processo di riscaldamento di 200 g di H2O da 60 gradi a 100 gradi evaporano 10 g di H2O. Assumendo per il calore lat
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!