The only thing that definitely happens in every such case is:
The container becomes heavier.
This question is incomplete, the complete question is;
Scientists studying an anomalous magnetic field find that it is inducing a circular electric field in a plane perpendicular to the magnetic field. The electric field strength 1.5 m from the center of the circle is 7 mV/m.
At what rate is the magnetic field changing?
Answer:
the magnetic field changing at the rate of 9.33 m T/s
Explanation:
Given the data in the question;
Electric field E = 7 mV/m
radius r = 1.5 m
Now, from Faraday law of induction;
∫E.dl = d∅/dt
E∫dl = A( dB/dt )
E( 2πr ) = πr² ( dB/dt )
( 0.007 ) = (r/2) ( dB/dt )
( 0.007 ) = 0.75 ( dB/dt )
dB/dt = 0.007 / 0.75
dB/dt = 0.00933 T/s
dB/dt = ( 0.00933 × 1000) m T/s
dB/dt = 9.33 m T/s
Therefore, the magnetic field changing at the rate of 9.33 m T/s
85 N - 40 N = 45 N
And depending on direction the greater force is being pulled towards
Answer:

Explanation:
As we know that the satellite revolves around the planet then the centripetal force for the satellite is due to gravitational attraction force of the planet
So here we will have

here we have


here we have

now we can find time period as




Now the density is given as



Answer:
2 seconds
Explanation:
The frequency of a wave is related to its wavelength and speed by the equation

where
f is the frequency
v is the speed of the wave
is the wavelength
For the wave in this problem,
v = 2 m/s

So the frequency is

The period of a wave is equal to the reciprocal of the frequency, so for this wave:

This means that the wave takes 4 seconds to complete one full cycle.
Therefore, the time taken for the wave to go from a point with displacement +A to a point with displacement -A is half the period, therefore for this wave:
