Answer:
14 ml of water
Explanation:
To find the volume you need to dilute the concentration of a solution, you should use the formula C1 x V1 = C2 x V2 in which:
C1 = initial concentration ( in this case 60 %)
V1 = initial volume ( in this case 70 ml)
C2 = Final concentration ( you want to dilute until 50 %)
V2 = final volume ( the variable you want to search)
So you need to:
1.- Isolate the variable you want to find: V2 = (C1 x V1) / C2
2.- Substitute data: V2 = (60% x 70 ml) /50 %
3.- You do the math, in this case is 84 ml.
4.- Remember that you have a initial volume of 70 ml, so the difference (84 ml - 70 ml = 14 ml) is the volume you need to add to dilute your solution.
Option E, Real gas particles have more complex interactions than ideal gas particles.
In ideal gases, there is absolutely no interaction between any atoms. At all. Atoms simply don't bump into each other in ideal gases.
Obviously, you know that's unrealistic. In real gases, atoms collide into each other all the time.
-T.B.
Lavoisier is known as the “Father of Modern Chemistry” or the “Father of Chemistry”.
He is famous for isolating oxygen and establishing the law of conservation of mass.
B: produces energy for the cell
Answer:
5.41 g
Explanation:
Considering:
Or,
Given :
For tetraphenyl phosphonium chloride :
Molarity = 33.0 mM = 0.033 M (As, 1 mM = 0.001 M)
Volume = 0.45 L
Thus, moles of tetraphenyl phosphonium chloride :
Moles of TPPCl = 0.01485 moles
Molar mass of TPPCl = 342.39 g/mol
The formula for the calculation of moles is shown below:
Thus,
Mass of TPPCl = 5.0845 g
Also,
TPPCl is 94.0 % pure.
It means that 94.0 g is present in 100 g of powder
5.0845 g is present in 5.41 g of the powder.
<u>Answer - 5.41 g</u>