When the student uses a straw to blow a stream of air between the papers, the <span>two pieces of paper come together because the pressure between the two was lowered. This follows the Bernoulli’s Principle. Hope this answers the question. Have a nice day.</span>
When undergoing an ultrasound, the transducer probe of the ultrasound machine transmits sound waves. It also receives the sound waves that are reflected back after it reaches a boundary.
The reflected waves are received by the probe and relayed to the ultrasound machine. The machine calculates the distance from the probe to the tissue or organ (boundaries) using the speed of sound in tissue and the time of the each echo's return. It then <span>displays the distances and intensities of the echoes on the display screen, forming a two dimensional image. </span>
Answer:
m1 = 20g (= 0.02 kg)
Mass of pistol, m2 = 2 kg
Initial velocity of the bullet (u1) and pistol (u2) = 0
Final velocity of the bullet, v1 = +150m s-1
Let v be the recoil velocity of the pistol.
Total momentum of the pistol and bullet after it is fired is
= (0.02 kg x 150 m s-1) + (2 kg x v m s-1)
= (3 + 2v) kg m s-1
Total momentum after the fire = Total momentum before the fire
3 + 2v = 0
→v = -1.5 m/s
Because metric units use the deca system, 1km = 1000m = 100 000cm etc...