1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepladder [879]
2 years ago
12

The distance light travels in a year is called _______.

Physics
2 answers:
MrRissso [65]2 years ago
4 0
The answer would be a Light year.
lesya [120]2 years ago
4 0

the answer is a, a light year. Hope this helped!

You might be interested in
Which federal agency protects ecosystems and supervisors public access the forests
Rainbow [258]

Answer:

United States forest service

3 0
2 years ago
Read 2 more answers
We have three identical metallic spheres A, B, C. Initially sphere A is charged with charge Q, while B and C are neutral. First,
larisa [96]

Answer:

The final charges of each sphere are:   q_A = 3/8 Q , q_B = 3/8 Q ,               q_C = 3/4 Q

Explanation:

This problem asks for the final charge of each sphere, for this we must use that the charge is distributed evenly over a metal surface.

Let's start Sphere A makes contact with sphere B, whereby each one ends with half of the initial charge, at this point

                q_A = Q / 2

                q_B = Q / 2

Now sphere A touches sphere C, ending with half the charge

                q_A = ½ (Q / 2) = ¼ Q

                q_B = ¼ Q

Now the sphere A that has Q / 4 of the initial charge is put in contact with the sphere B that has Q / 2 of the initial charge, the total charge is the sum of the charge

                  q = Q / 4 + Q / 2 = ¾ Q

This is the charge distributed between the two spheres, sphere A is 3/8 Q and sphere B is 3/8 Q

                  q_A = 3/8 Q

                  q_B = 3/8 Q

The final charges of each sphere are:

                q_A = 3/8 Q

                q_B = 3/8 Q

                q_C = 3/4 Q

7 0
3 years ago
A 1 kg mass is attached to a spring with spring constant 7 Nt/m. What is the frequency of the simple harmonic motion? What is th
Scorpion4ik [409]

1. 0.42 Hz

The frequency of a simple harmonic motion for a spring is given by:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 7 N/m is the spring constant

m = 1 kg is the mass attached to the spring

Substituting these numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{7 N/m}{1 kg}}=0.42 Hz

2. 2.38 s

The period of the harmonic motion is equal to the reciprocal of the frequency:

T=\frac{1}{f}

where f = 0.42 Hz is the frequency. Substituting into the formula, we find

T=\frac{1}{0.42 Hz}=2.38 s

3. 0.4 m

The amplitude in a simple harmonic motion corresponds to the maximum displacement of the mass-spring system. In this case, the mass is initially displaced by 0.4 m: this means that during its oscillation later, the displacement cannot be larger than this value (otherwise energy conservation would be violated). Therefore, this represents the maximum displacement of the mass-spring system, so it corresponds to the amplitude.

4. 0.19 m

We can solve this part of the problem by using the law of conservation of energy. In fact:

- When the mass is released from equilibrium position, the compression/stretching of the spring is zero: x=0, so the elastic potential energy is zero, and all the mechanical energy of the system is just equal to the kinetic energy of the mass:

E=K=\frac{1}{2}mv^2

where m = 1 kg and v = 0.5 m/s is the initial velocity of the mass

- When the spring reaches the maximum compression/stretching (x=A=amplitude), the velocity of the system is zero, so the kinetic energy is zero, and all the mechanical energy is just elastic potential energy:

E=U=\frac{1}{2}kA^2

Since the total energy must be conserved, we have:

\frac{1}{2}mv^2 = \frac{1}{2}kA^2\\A=\sqrt{\frac{m}{k}}v=\sqrt{\frac{1 kg}{7 N/m}}(0.5 m/s)=0.19 m

5. Amplitude of the motion: 0.44 m

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}kA^2 is the mechanical energy of the system when x=A (maximum displacement)

Equalizing the two expressions, we can solve to find A, the amplitude:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}kA^2\\A=\sqrt{x_0^2+\frac{m}{k}v_0^2}=\sqrt{(0.4 m)^2+\frac{1 kg}{7 N/m}(0.5 m/s)^2}=0.44 m

6. Maximum velocity: 1.17 m/s

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}mv_{max}^2 is the mechanical energy of the system when x=0, which is when the system has maximum velocity, v_{max}

Equalizing the two expressions, we can solve to find v_{max}, the maximum velocity:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}mv_{max}^2\\v_{max}=\sqrt{\frac{k}{m}x_0^2+v_0^2}=\sqrt{\frac{7 N/m}{1 kg}(0.4 m)^2+(0.5 m/s)^2}=1.17 m/s m

4 0
2 years ago
Read 2 more answers
Consider a situation of simple harmonic motion in which the distance between the endpoints is 2.39 m and exactly 8 cycles are co
aivan3 [116]

Answer:

1.195 m

2.8375 s

2.21433 rad/s

Explanation:

d = Distance = 2.39 m

N = Number of cycles = 8

t = Time to complete 8 cycles = 22.7 s

Radius would be equal to the distance divided by 2

r=\frac{d}{2}\\\Rightarrow r=\frac{2.39}{2}\\\Rightarrow r=1.195\ m

The radius is 1.195 m

Time period would be given by

T=\frac{t}{N}\\\Rightarrow T=\frac{22.7}{8}\\\Rightarrow T=2.8375\ s

Time period of the motion is 2.8375 s

Angular speed is given by

\omega=\frac{2\pi}{T}\\\Rightarrow \omega=\frac{2\pi}{2.8375}\\\Rightarrow \omega=2.21433\ rad/s

The angular speed of the motion is 2.21433 rad/s

4 0
3 years ago
Why do adults make bigger splashes when they jump into swimming pools than small children?
Semenov [28]

Answer:

it bc the adults are bigger then us kid so when they dip in the pool it makes bigger splashes

Explanation:

5 0
3 years ago
Other questions:
  • A cold coke bottle is on the pan of a balance and is left open. What happens to its weight?​
    11·2 answers
  • Which label identifies the statement: "Energy cannot be created or destroyed, but it can be converted or changed into different
    11·1 answer
  • What does a cell division allow all multicellular organisms to do
    13·1 answer
  • If the speed of a car is increased by 80%, by what factor will its minimum braking distance be increased, assuming all else is t
    12·1 answer
  • What happens when you push a spring? How is this different than pulling it? (Hooke’s Law)
    14·2 answers
  • The kinetic energy of a rotating body is generally written as K=12Iω2, where I is the moment of inertia. Find the moment of iner
    15·1 answer
  • Pls help will mark brain
    11·1 answer
  • The velocity time graph of a body is given below. Find the distance travelled by the body from A to B. *
    9·1 answer
  • A car starts at point A from rest. It returns to point A in 30 seconds. The race from start to finish is 1 mile.
    15·1 answer
  • What is the radius of the 5th orbital in hydrogen?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!