Answer:
Option A
Explanation:
Emma creates a pressure difference allowing the fluid to flow
<span>The half-life of 9 months is 0.75 years.
2.0 years is 2.0/0.75 = 2.67 half-lives.
Each half-life represents a reduction in the amount remaining by a factor of two, so:
A(t)/A(0) = 2^(-t/h)
where A(t) = amount at time t
h = half-life in some unit
t = elapsed time in the same unit
A(t)/A(0) = 2^(-2.67) = 0.157
15.7% of the original amount will remain after 2.0 years.
This is pretty easy one to solve. I was happy doing it.</span>
440 cause mass cant be created or destroyed
The green and black symbols refer to atoms, that make up the molecule of water, more specifically you can say that the 2 Hydrogen atoms are the black ones found outside, while the central atom, that is also green would be oxygen.
Answer:
979 atm
Explanation:
To calculate the osmotic pressure, you need to use the following equation:
π = <em>i </em>MRT
In this equation,
-----> π = osmotic pressure (atm)
-----><em> i</em> = van't Hoff's factor (number of dissolved ions)
-----> M = Molarity (M)
-----> R = Ideal Gas constant (0.08206 L*atm/mol*K)
-----> T = temperature (K)
When LiCl dissolves, it dissociates into two ions (Li⁺ and Cl⁻). Therefore, van't Hoff's factor is 2. Before plugging the given values into the equation, you need to convert Celsius to Kelvin.
<em>i </em>= 2 R = 0.08206 L*atm/mol*K
M = 20 M T = 25°C + 273.15 = 298.15 K
π = <em>i </em>MRT
π = (2)(20 M)(0.08206 L*atm/mol*K)(298.15 K)
π = 979 atm