The number of potassium atom that are in 0.25 moles potassium carbonate is calculated as follows
by use of Avogadro contant
1 mole= 6.02 x10^23 atoms
what about 0.25 moles,
by close multiplication
{0.250 moles x 6.02 x10^23} / 1 mole = 1.505 x10^23 atoms
The correct answer is 12.044 × 10²³ molecules.
The molecular mass of H₂S is 34 gram per mole.
Number of moles is determined by using the formula,
Number of moles = mass/molecular mass
Given mass is 68 grams, so no of moles will be,
68/34 = 2 moles
1 mole comprises 6.022 × 10²³ molecules, therefore, 2 moles will comprise = 6.022 × 10²³ × 2
= 12.044 × 10²³ molecules.
There are 3 equations involved in manufacturing Nitric Acid from Ammonia.
First the ammonia is oxidized:
4NH3 + 5O2 = 4NO + 6H2O
Then for the absorption of the nitrogen oxides.
2NO + O2 = N2O4
Lastly, the N2O4 is further oxidized into Nitric acid.
3N2O4 + 2H2O = 4HNO3 + 2NO
Then run stoichiometry through these equations.
The first equation produces roughly 271,722,938 grams of NO
The second equation produces roughly 416,606,944 grams of N2O4
The last equation produces roughly 380,412,294 grams of HNO3 (nitric acid)
Convert the exact number back into tons, and your answer is: <span>419.332775 tons.
</span>
Rounded, I'm going to say that's 419.33 tons.
Hope this helps! :)
Also, it seems that commercially, Nitric Acid is commonly made by bubbling NO2 into water, rather than using ammonia.