Answer:
1.514 moles
Explanation:
For this problem you want to use dimensional analysis and cancel out your molecules of sugar and be left with moles of sugar. We know that 1 mole (of anything) = 6.022 x 10 ^ 23 molecules, so we should use that conversion to help us. Start with 9.12 x 10 ^23 molecules and divide by 6.022 x 10 ^ 23 molecules, and you will be left with moles.
Hope this helps!
Answer:
Option A = 2.2 L
Explanation:
Given data:
volume of one mole of gas = 22.4 L
Volume of 0.1 mole of gas at same condition = ?
Solution:
It is known that one mole of gas at STP occupy 22.4 L volume. The standard temperature is 273.15 K and standard pressure is 1 atm.
For 0.1 mole of methane.
0.1/1 × 22.4 = 2.24 L
0.1 mole of methane occupy 2.24 L volume.
Answer:
Kinetic energy is the energy that an object has because of its motion. The molecules in a substance have a range of kinetic energies because they don't all move at the same speed. As a substance absorbs heat the particles move faster so the average kinetic energy and therefore the temperature increases.
The density of an object or quantity of matter is its mass divided by its volume.
The experimental mole ratio of silver chloride to barium chloride is calculated as below
fin the mole of each compound
mole= mass/molar mass
moles of AgCl = 14.5g/142.5 g/mol = 0.102 moles of AgCl
moles of BaCl2 = 10.2 g/208 g/mol = 0.049 moles of BaCl2
find the mole ratio by dividing each mole with the smallest mole(0.049)
AgCl= 0.102/0.049 =2
BaCl2 = 0.049/0.049 =1
therefore the mole ratio AgCl to BaCl2 is 2 :1