Answer:
Demonstration 1 showed a chemical change because a new gaseous substance was formed, and demonstration 2 showed a physical change because liquid water became water vapor.
Explanation:
Chemical changes alter the chemical makeup of a subject, and a physical change only alters the appearance of a subject, not the chemical makeup.
Answer: The correct answer is -297 kJ.
Explanation:
To solve this problem, we want to modify each of the equations given to get the equation at the bottom of the photo. To do this, we realize that we need SO2 on the right side of the equation (as a product). This lets us know that we must reverse the first equation. This gives us:
2SO3 —> O2 + 2SO2 (196 kJ)
Remember that we take the opposite of the enthalpy change (reverse the sign) when we reverse the equation.
Now, both equations have double the coefficients that we would like (for example, there is 2S in the second equation when we need only S). This means we should multiply each equation (and their enthalpy changes) by 1/2. This gives us:
SO3 —>1/2O2 + SO2 (98 kJ)
S + 3/2O2 —> SO3 (-395 kJ)
Now, we add the two equations together. Notice that the SO3 in the reactants in the first equation and the SO3 in the products of the second equation cancel. Also note that O2 is present on both sides of the equation, so we must subtract 3/2 - 1/2, giving us a net 1O2 on the left side of the equation.
S + O2 —> SO2
Now, we must add the enthalpies together to get our final answer.
-395 kJ + 98 kJ = -297 kJ
Hope this helps!
Lithium Oxide
I just search it up to be honest
Answer:
1. Synthesis
2. Decomposition
3. Single replacement
4. Synthesis
5. Decomposition
6. Synthesis
Explanation:
Kind of a hard picture to look at but let me define each chemical reaction:
Synthesis:
a + b ---> ab In synthesis elements/compounds come together to form new compounds
Decomposition:
ab ---> a + b In decomposition a compound breaks down to form 2 elements/compounds
Single replacement:
a + bc ---> b + ac In a single replacement one element/compound takes the place of another element/compound.
Double replacement
ab + cd ---> ad + bc In a double replacement 2 compounds exchange different elements/compounds.
Now, let's go through the assignment
1. P + O2 --> P4O10 This is a synthesis reaction because the two elements (P and O) came together to form one compound.
2. HgO ---> Hg + O2 This is a decomposition reaction because HgO broke into separate elements Hg and O.
3. Cl2 + NaBr ---> NaCl + Br2 This is a single replacement reaction because chlorine (Cl) replaced the spot of bromine (Br) to bond with sodium (Na).
4. Mg + O2 ---> MgO This is a synthesis reaction because two elements (Mg and O) came together to form one compound.
5. Al2O3 ---> Al + O2 This is a decomposition reactions because Al2O3 broke into separate elements Al and O.
6. H2 + N2 ---> NH3 This is a synthesis reaction because two elements (H and N) came together to form one compound.
<em>I hope this helps!!</em>
<em>- Kay :)</em>
(missing in Q) : Calculate the concentration of CO & H2 & H2O when the system returns the equilibrium???
when the reaction equation is:
C(s) + H2O(g) ↔ H2(g) + CO(g)
∴ Kc = [H2] [CO] / [H2O]
and we have Kc = 0.0393 (given missing in the question)
when the O2 is added so, the reaction will be:
2H2(g) + O2(g) → 2H2O(g)
that means that 0.15 mol H2 gives 0.15 mol of H2O
∴ by using ICE table:
[H2O] [H2] [CO]
initial 0.57 + 0.15 0 0.15
change -X +X +X
Equ (0.72-X) X (0.15+X)
by substitution:
0.0393 = X (0.15+X) / (0.72-X) by solving for X
∴ X = 0.098
∴[H2] = X = 0.098 M
∴[CO] = 0.15 + X
= 0.15 + 0.098 = 0.248 M
∴[H2O] = 0.72 - X
= 0.72 - 0.098
= 0.622 M