Answer:
If it is moving 34 m/s it will take 100 seconds, or 1:40 to reach 3400 meters.
Explanation:
I found this answer by dividing 3400 by 34 and converting seconds to minutes
<span>Basically, the variable n is equal to the amount of P out of the system divided by the about of P into the system
</span>
Answer:
51.85m/s
Explanation:
Given parameters:
Mass of ball = 0.0459kg
Force = 2380N
Time taken = 0.001s
Unknown:
Speed of the ball afterwards = ?
Solution:
To solve this problem, we use Newton's second law of motion:
F = m x
F is the force
m is the mass
v is the final velocity
u is the initial velocity
t is the time taken
2380 = 0.0459 x
0.0459v = 2.38
v = 51.85m/s
Answer:
2.19 N/m
Explanation:
A damped harmonic oscillator is formed by a mass in the spring, and it does a harmonic simple movement. The period of it is the time that it does one cycle, and it can be calculated by:
T = 2π√(m/K)
Where T is the period, m is the mass (in kg), and K is the damping constant. So:
2.4 = 2π√(0.320/K)
√(0.320/K) = 2.4/2π
√(0.320/K) = 0.38197
(√(0.320/K))² = (0.38197)²
0.320/K = 0.1459
K = 2.19 N/m
The specific heat capacity of the substance is 
Explanation:
When an object of mass m is supplied with a certain amount of energy Q, its temperature increases according to the equation:

where
m is the mass of the object
is its specific heat capacity
is the increase in temperature of the object
In this problem, we have

m = 50 g

Therefore, we can solve for
to find its specific heat capacity:

Learn more about specific heat capacity:
brainly.com/question/3032746
brainly.com/question/4759369
#LearnwithBrainly