Answer:
The correct answer is "1341.288 W/m".
Explanation:
Given that:
T₁ = 300 K
T₂ = 500 K
Diameter,
d = 0.2 m
Length,
l = 1 m
As we know,
The shape factor will be:
⇒ ![SF=\frac{2 \pi l}{ln[\frac{1.08 b }{d} ]}](https://tex.z-dn.net/?f=SF%3D%5Cfrac%7B2%20%5Cpi%20l%7D%7Bln%5B%5Cfrac%7B1.08%20b%20%7D%7Bd%7D%20%5D%7D)
By putting the value, we get
⇒ ![=\frac{2 \pi l}{ln[\frac{1.08\times 1}{0.2} ]}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B2%20%5Cpi%20l%7D%7Bln%5B%5Cfrac%7B1.08%5Ctimes%201%7D%7B0.2%7D%20%5D%7D)
⇒ 
hence,
The heat loss will be:
⇒ 



Number three number three number three I’m not 100% sure though
Answer:
17.799°
Explanation:
When the bullet hits the block at that time the momentum is conserved
So, initial momentum = final momentum

So 

Now energy is also conserved
So 

Answer:
All Brake lights are dimmer than normal because high resistance in the brake switch could be the cause according to Technician B.
Explanation:
According to Technician A
When the bulb is faulty then no current will flow through bulb and it will be open circuit.So no light will produce in bulb .
According to Technician B
When a high resistance inserted in series circuit the voltage across each resistance is reduced and this cause the light glow dimly.
Formula of resistance in series circuit
Rt=r1+r2+r3......
Answer:
N = 38546.82 rpm
Explanation:
= 150 mm

= 17671.45 
= 250 mm

= 49087.78 
The centrifugal force acting on the flywheel is fiven by
F = M (
-
) x
------------(1)
Here F = ( -UTS x
+ UCS x
)
Since density, 





∴
-
= 50 mm
∴ F = 
F = 33618968.38 N --------(2)
Now comparing (1) and (2)

∴ ω = 4036.61
We know


∴ N = 38546.82 rpm