Answer:
E = 2940 J
Explanation:
It is given that,
Mass, m = 12 kg
Position at which the object is placed, h = 25 m
We need to find the potential energy of the mass. It is given by the formula as follows :
E = mgh
g is acceleration due to gravity

So, the potential energy of the mass is 2940 J.
The programming language that is most likely used to transmit the wind speed is: B. SQL.
<h3>What is SQL?</h3>
SQL is an acronym for structured query language and it can be defined as a domain-specific programming language that is designed and developed for the management of various data that are saved in a relational or structured database.
This ultimately implies that, a structured query language (SQL) can be used to communicate with a database in accordance with the American National Standards Institute (ANSI) standards.
In conclusion, the programming language that is most likely used to transmit the wind speed is SQL.
Read more on SQL here:
brainly.com/question/25266787
#SPJ1
Answer:
(a) The magnitude of force is 116.6 lb, as exerted by the rod CD
(b) The reaction at A is (-72.7j-38.1k) lb and at B it is (37.5j) lb.
Explanation:
Step by step working is shown in the images attached herewith.
For this given system, the coordinates are the following:
A(0, 0, 0)
B(26, 0, 0)
And the value of angle alpha is 20.95°
Hope that answers the question, have a great day!
The power that must be supplied to the motor is 136 hp
<u>Explanation:</u>
Given-
weight of the elevator, m = 1000 lb
Force on the table, F = 500 lb
Distance, s = 27 ft
Efficiency, ε = 0.65
Power = ?
According to the equation of motion:
F = ma

a = 16.1 ft/s²
We know,

To calculate the output power:
Pout = F. v
Pout = 3 (500) * 29.48
Pout = 44220 lb.ft/s
As efficiency is given and output power is known, we can calculate the input power.
ε = Pout / Pin
0.65 = 44220 / Pin
Pin = 68030.8 lb.ft/s
Pin = 68030.8 / 500 hp
= 136 hp
Therefore, the power that must be supplied to the motor is 136 hp
Answer:

Explanation:
The turbine at steady-state is modelled after the First Law of Thermodynamics:

The specific enthalpies at inlet and outlet are, respectively:
Inlet (Superheated Steam)

Outlet (Liquid-Vapor Mixture)

The power produced by the turbine is:


