Answer:
Vy = 26 m/s sin 30 = 13 m/s vertical speed
t = Vy / a = 13 m/s / 9.80 m/s^2 = 1.33 sec time to reach Vy = 0
H = Vy t + 1/2 g t^2
H = 13 m/s * 1.33 sec - 1.33^2 * 9.8 / 2 m = 8.62 m
<span>The distance between two objects is increased by three times the oringinal distance. Since they were already separated by one time the original distance,
the additional three times the oringinal distance now puts them four times the original distance apart.
Whether we're talking about the gravitational forces of attraction or
the electrical forces of attraction, either one is inversely proportional
to the square of the distance between the objects.
So changing the distance to four times the original distance causes
the forces to become 1/4</span>² as strong as they were originally.
The forces become 1/16 of their original magnitude.<span>
</span>
A) 140 degrees
First of all, we need to find the angular velocity of the Ferris wheel. We know that its period is
T = 32 s
So the angular velocity is

Assuming the wheel is moving at constant angular velocity, we can now calculate the angular displacement with respect to the initial position:

and substituting t = 75 seconds, we find

In degrees, it is

So, the new position is 140 degrees from the initial position at the top.
B) 2.7 m/s
The tangential speed, v, of a point at the egde of the wheel is given by

where we have

r = d/2 = (27 m)/2=13.5 m is the radius of the wheel
Substituting into the equation, we find

In order to describe motion along a straight line, you must state the speed and direction of the motion. Those two quantities, together, comprise what's known as "velocity".
Answer:
2.64N
Explanation:
Force = mass * acceleration
Given
mass = 4kg
distance = 1.9m
Time t = 2.4s
Get the acceleration using the equation of motion
S = ut + 1/2at²
1.9 = 0 + 1/2a(2.4)²
1.9 = 5.76a/2
1.9 = 2.88a
a = 1.9/2.88
a = 0.66m/s²
Get the magnitude of the force
Force = 4 * 0.66
Force = 2.64N
Hence the net force acting on the fish is 2.64N