I think that the answer might be B.
Answer:
Thomson's experiments with cathode ray tubes showed that all atoms contain tiny negatively charged subatomic particles or electrons. Thomson's plum pudding model of the atom had negatively-charged electrons embedded within a positively-charged "soup.
Answer:
True
Explanation:
The desert refers to a region of arid land which is characterized by extreme temperatures, extreme dryness, low amount of precipitation and generally harsh living conditions. Because of these harsh conditions, they have been tagged with various names ranging from 'Death Valley' to 'the place from where there is no return' etc.
Every desert is made up of 2 components: the <u>biotic (living) component</u> and the <u>abiotic (non-living) component</u>. The biotic (living) component consists of the plants and animals that have adapted to these harsh living conditions e.g. Cactus or Cacti, Holly plants, Camels, Lizards, Snakes etc. The abiotic (non-living) component consists of climate (subtropical deserts which are extremely cold or temperate deserts which are extremely hot), location, precipitation/rainfall
This problem could be solved easily using the Henderson-Hasselbach equation used for preparing buffer solutions. The equation is written below:
pH = pKa + log[(salt/acid]
Where salt represents the molarity of salt (sodium lactate), while acid is the molarity of acid (lactic acid).
Moles of salt = 1 mol/L * 25 mL * 1 L/1000 mL = 0.025 moles salt
Moles of acid = 1 mol/L* 60 mL * 1 L/1000 mL = 0.06 moles acid
Total Volume = (25 mL + 60 mL)*(1 L/1000 mL) = 0.085 L
Molarity of salt = 0.025 mol/0.085 L = 0.29412 M
Molarity of acid = 0.06 mol/0.085 L = 0.70588 M
Thus,
pH = 3.86 + log(0.29412/0.70588)
pH = 3.48
Osmosis and diffusion are related processes that display similarities. Both osmosis and diffusion equalize the concentration of two solutions. Both diffusion and osmosis are passive transport processes, which means they do not require any input of extra energy to occur. In both diffusion and osmosis, particles move from an area of higher concentration to one of lower concentration. Osmosis and facilitated diffusion both account for movement of molecules from a region of high concentration to a region of low concentration.