Answer:
We begin by solving the equation P = hρg for depth h: h=Pρg h = P ρ g . Then we take P to be 1.00 atm and ρ to be the density of the water that creates the pressure.
Answer:
12.35m
Explanation:
Hello! To solve this problem we must consider the following:
1. The car moves with constant speed, which means that the distance traveled is equal to the multiplication of time by speed.
X = VT
we solve the equation for time

2. The bolt moves with constant acceleration, with acceleration of 9.81m / s ^ 2, so we could apply the following equation.
note=remember that "a uniformly accelerated motion", means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.

where
Vo = Initial speed
=0
T = time
=1.588s
g =gravity=9.8m/s^2
Y = bridge height
solving

Answer:
The correct option is energy levels
Explanation:
Rutherford's model of an atom suggests that an atom has a tiny positively charged central mass (now called the nucleus) which is surrounded by electrons (negatively charged) in a <em>cloud</em>-like manner.
Bohr's model went a bit further than the Rutherford's model in describing an atom by suggesting that the electrons which surrounds in the nucleus travel in <u>fixed circular orbits</u>. This description by <em>Bohr was able to describe the energy levels of orbitals which assumes that smallest orbitals have the lowest energy while the largest orbitals have the highest energy</em>.