Answer:
The recoil velocity is 0.354 m/s.
Explanation:
Given that,
Mass of hunter = 70 kg
Mass of bullet = 42 g = 0.042 kg
Speed of bullet = 590 m/s
We need to calculate the recoil speed of hunter
Using conservation of momentum

Where,
= mass of hunter
= mass of bullet
u = initial velocity
v = recoil velocity
Put the value in the equation



Hence, The recoil velocity is 0.354 m/s.
Set up the problem with the conversion rates as fractions where when you multiply the units cancel out leaving the desired units behind.
C. Amount of oxygen
The others either change but don’t decrease or they increase.
Answer: F = 1235 N
Explanation: Newton's Second Law of Motion describes the effect of mass and net force upon acceleration: 
Acceleration is the change of velocity in a period of time: 
Velocity of the car is in km/h. Transforming it in m/s:

v = 13 m/s
At the moment the car decelerates, acceleration is
a = 65 m/s²
Then, force will be

= 1235 N
The horizontal net force the straps of the restraint chair exerted on the child to hold her is 1235 newtons.
Answer:
a) 3.43 m/s
Explanation:
Due to the law of conservation of momentum, the total momentum of the bullet - rifle system must be conserved.
The total momentum before the bullet is shot is zero, because they are both at rest, so:

Instead the total momentum of the system after the shot is:

where:
m = 0.006 kg is the mass of the bullet
M = 1.4 kg is the mass of the rifle
v = 800 m/s is the velocity of the bullet
V is the recoil velocity of the rifle
The total momentum is conserved, therefore we can write:

Which means:

Solving for V, we can find the recoil velocity of the rifle:

where the negative sign indicates that the velocity is opposite to direction of the bullet: so the recoil speed is
a) 3.43 m/s