Answer:
10 m/s
Explanation:
Momentum before collision = momentum after collision
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
(8 kg)(8 m/s) + (6 kg)(6 m/s) = (8 kg)(5 m/s) + (6 kg) v
64 kg m/s + 36 kg m/s = 40 kg m/s + (6 kg) v
60 kg m/s = (6 kg) v
v = 10 m/s
Answer:
A: 1.962
B: 3.924
Explanation:
g = G *M /R^2
g = 9.807*M/R^2 the gravitational constant of ground level on earth is about 9.807
g = 9.807*5lbs/R^2 the average brick is about 5 pounds.
g = 9.807*5*10^2. I'm assuming the height is around ten feet to help you out.
with these numbers plugged in you get an acceleration of 0.4905 a final velocity after 4 seconds 1.962. It's height fallen after 4 seconds is 3.924.
( M = whatever the brick weighs it's not specified in the question)
(R = the distance from the ground or how high the scaffold is)
(hopefully you can just plug your numbers in there hope this helps)
Answer:
d.Energy as heat transferred into an object is determined by the amount of work done on the object.
Explanation:
1.Density of the material building the raft must be lower than the water.
<span>2. Material must not react with water. </span>
<span>3.Material must have high strength. </span>
<span>4.Raft must be wide in-order to avoid drawing in the river.</span>