1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rom4ik [11]
3 years ago
15

Which best describes a material with a low index of refraction (near 1)?

Physics
2 answers:
s344n2d4d5 [400]3 years ago
7 0

Answer:

it causes light to slow and refract very little

Explanation:

its on my test

Katyanochek1 [597]3 years ago
4 0

it causes light to slow and refract very little

You might be interested in
A scientist is subjected to a dose of ionizing radiation in his laboratory. without the help of radiation detection instruments,
vesna_86 [32]
<span>Health problems that develop later</span>
5 0
3 years ago
The principal of uniformitarian states that
Akimi4 [234]
It started that the present is the key to the past. The process that we see in operation today are the same ones that have operated in the geologic past.
4 0
3 years ago
A rope of total mass m hnd length L is suspended vertically with an object of mass M suspended from the lower end. Find an expre
pantera1 [17]

Answer:

Part a)

v = \sqrt{xg + \frac{MLg}{m}}

Part b)

t = 12 s

Explanation:

Part a)

Tension in the rope at a distance x from the lower end is given as

T = \frac{m}{L}xg + Mg

so the speed of the wave at that position is given as

v = \sqrt{\frac{T}{\mu}}

here we know that

\mu = \frac{m}{L}

now we have

v = \sqrt{\frac{ \frac{m}{L}xg + Mg}{m/L}

v = \sqrt{xg + \frac{MLg}{m}}

Part b)

time taken by the wave to reach the top is given as

t = \int \frac{dx}{\sqrt{xg + \frac{MLg}{m}}}

t = \frac{1}{g}(2\sqrt{xg + \frac{MLg}{m}})

t = \frac{2}{9.8}(\sqrt{(39.2\times 9.8) + \frac{8(39.2)(9.8)}{1}})

t = 12 s

4 0
3 years ago
A power supply has an open-circuit voltage of 40.0 V and an internal resistance of 2.00 V. It is used to charge two storage batt
Natali [406]

Complete Question

A power supply has an open-circuit voltage of 40.0 V and an internal resistance of 2.00 \Omega. It is used to charge two storage batteries connected in series, each having an emf of 6.00 V and internal resistance of 0.300\Omega . If the charging current is to be 4.00 A, (a) what additional resistance should be added in series? At what rate does the internal energy increase in (b) the supply, (c) in the batteries, and (d) in the added series resistance? (e) At what rate does the chemical energy increase in the batteries?

Answer:

a

The additional resistance is R_z =  4.4 \Omega

b

The rate at which internal energy increase at the supply is Z_1 = 32 W

c

The rate at which internal energy increase in the battery  is  Z_1 = 32 W

d

The rate at which internal energy increase in the added series resistance is  Z_3 = 70.4 W

e

the increase rate of the chemically energy in the battery is C =  48 W

Explanation:

From the question we are told that

    The  open circuit voltage is  V =  40.0V

     The internal resistance is R = 2 \Omega

     The emf of each battery is e =  6.00 V

      The internal resistance of the battery is  r = 0.300V

      The  charging current is  I = 4.00 \ A

Let assume the the additional resistance to to added to the circuit is  R_z

 So this implies that

        The total resistance in the circuit is

                              R_T =  R + 2r +R_z

Substituting values

                             R_T = 2.6 +R_z

And  the difference in potential in the circuit is  

                         E = V -2e

                 =>   E =  40 - (2 * 6)

                        E =  28 V

Now according to ohm's law

            I = \frac{E}{R_T}

Substituting values

           4 = \frac{28}{R_z + 2.6}        

Making R_z the subject of the formula

So    R_z =  \frac{28 - 10.4}{4}

           R_z =  4.4 \Omega

The  increase rate of   internal energy at the supply is mathematically represented as

        Z_1  = I^2 R

Substituting values

     Z_1  = 4^2 * 2

     Z_1 = 32 W

The  increase rate of   internal energy at the batteries  is mathematically represented as

         Z_2 = I^2 r

Substituting values

         Z_2 = 4^2 * 2 * 0.3

         Z_2 = 9.6 \ W

The  increase rate of  internal energy at the added  series resistance  is mathematically represented as

        Z_3 = I^2 R_z

Substituting values

       Z_3 = 4^2 * 4.4

      Z_3 = 70.4 W

Generally the increase rate of the chemically energy in the battery is  mathematically represented as

         C = 2 * e * I

Substituting values

       C =  2 * 6  * 4

      C =  48 W

6 0
3 years ago
SP1b.
nata0808 [166]

Answer:

2 m/s^2, west

Explanation:

Vf=final velcoity

Vi=initial velocity

t=timw

a =  \frac{vf - vi}{t}

=

\frac{15 - 25}{5}

= - 2 m/s^2

The - changes direction and makes it opposite

2 m/s, west

3 0
3 years ago
Other questions:
  • How does a nuclear power plant produce electricity
    10·1 answer
  • How many electrons are there in 3.5 x 10" C?
    7·1 answer
  • If the frequency of an electromagnetic wave increases, does the number of waves passing by you increase, decrease, or stay the s
    5·1 answer
  • Powered ventilation systems should be turned on for how many minutes before starting the engine to ensure all gasoline vapors ha
    9·2 answers
  • The change in electric potential energy per unit charge is
    9·2 answers
  • What is the difference between the states of phase equilibrium and metastability?
    12·1 answer
  • A 1.3 kgkg block slides along a frictionless surface at 1.3 m/sm/s . A second block, sliding at a faster 5.0 m/sm/s , collides w
    9·2 answers
  • A fan is driven by an electric motor. Explain how adding a thermistor to the circuit would make the fan move faster when the roo
    11·2 answers
  • A closed, rigid tank fitted with a paddle wheel contains 2 kg of air, initially at 300 K. During an interval of 5 minutes, the p
    7·1 answer
  • Use the following information for question 26 and 27. A 550-g ball traveling at 8.0 m/s undergoes a sudden head-on perfectly ela
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!