Answer:
Explanation:
If two forces act on an object in the same direction, the net force is equal to the sum of the two forces.
In naming covalent compound (binary) based in IUPAC naming, we have 4 rules to be followed:
1. The first element of the formula will use the normal name of the given element. for example: CO2 ( Carbon Dioxide), Carbon is the element name of the first element of the formula.
2. The second element is named as if they are treated like an anion but put in mind that these are no ions in a covalent compound but we put -ide on the second element as if it is an anion.
3. Prefixes are used to indicate the number of atom of the elements in the compound. for example: mono- 1 atom, di- 2atoms, tri- 3 atoms and etc
4. Prefix "mono"is never used in naming the first element. For example: Carbon dioxide, there should be no monocarbon dioxide.
Answer:
μ = 0.692
Explanation:
In order to solve this problem, we must make a free body diagram and include the respective forces acting on the body. Similarly, deduce the respective equations according to the conditions of the problem and the directions of the forces.
Attached is an image with the respective forces:
A summation of forces on the Y-axis is performed equal to zero, in order to determine the normal force N. this summation is equal to zero since there is no movement on the Y-axis.
Since the body moves at a constant speed, there is no acceleration so the sum of forces on the X-axis must be equal to zero.
The frictional force is defined as the product of the coefficient of friction by the normal force. In this way, we can calculate the coefficient of friction.
The process of solving this problem can be seen in the attached image.
Answer:
The total resistance in a parallel circuit is always less than any of the branch resistances. Adding more parallel resistances to the paths causes the total resistance in the circuit to decrease. As you add more and more branches to the circuit the total current will increase because Ohm's Law states that the lower the resistance, the higher the current.
Explanation: