1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
levacccp [35]
2 years ago
11

To which third period element do these ionization values belong?

Chemistry
2 answers:
Arlecino [84]2 years ago
7 0

Answer:

Aluminum, Al

Explanation:

aleksklad [387]2 years ago
4 0

IE1 = 578 kJ/mol 


IE2 = 1820 kJ/mol 


IE3 = 2750 kJ/mol 


IE4 = 11600 kJ/mol


If the following set of successive ionization energies are your ionization values this would likely belong to Aluminum. Since there is a huge point between the third and fourth ionization energies, which designates that the atom reached noble gas configuration after the third electron was removed. The element which has 3 valence electrons in the third period is aluminum.

You might be interested in
1s^2 2s^2 2p^6 3s^2 3p^6 how many unpaired electrons are in the atom represented by the electron configuration above?
Sedbober [7]
It's a combination of factors:
Less electrons paired in the same orbital
More electrons with parallel spins in separate orbitals
Pertinent valence orbitals NOT close enough in energy for electron pairing to be stabilized enough by large orbital size
DISCLAIMER: Long answer, but it's a complicated issue, so... :)
A lot of people want to say that it's because a "half-filled subshell" increases stability, which is a reason, but not necessarily the only reason. However, for chromium, it's the significant reason.
It's also worth mentioning that these reasons are after-the-fact; chromium doesn't know the reasons we come up with; the reasons just have to be, well, reasonable.
The reasons I can think of are:
Minimization of coulombic repulsion energy
Maximization of exchange energy
Lack of significant reduction of pairing energy overall in comparison to an atom with larger occupied orbitals
COULOMBIC REPULSION ENERGY
Coulombic repulsion energy is the increased energy due to opposite-spin electron pairing, in a context where there are only two electrons of nearly-degenerate energies.
So, for example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is higher in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier on us, we can crudely "measure" the repulsion energy with the symbol
Π
c
. We'd just say that for every electron pair in the same orbital, it adds one
Π
c
unit of destabilization.
When you have something like this with parallel electron spins...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
It becomes important to incorporate the exchange energy.
EXCHANGE ENERGY
Exchange energy is the reduction in energy due to the number of parallel-spin electron pairs in different orbitals.
It's a quantum mechanical argument where the parallel-spin electrons can exchange with each other due to their indistinguishability (you can't tell for sure if it's electron 1 that's in orbital 1, or electron 2 that's in orbital 1, etc), reducing the energy of the configuration.
For example...
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−− is lower in energy than
↑
↓
−−−−−

↓
↑
−−−−−

↑
↓
−−−−−
To make it easier for us, a crude way to "measure" exchange energy is to say that it's equal to
Π
e
for each pair that can exchange.
So for the first configuration above, it would be stabilized by
Π
e
(
1
↔
2
), but the second configuration would have a
0
Π
e
stabilization (opposite spins; can't exchange).
PAIRING ENERGY
Pairing energy is just the combination of both the repulsion and exchange energy. We call it
Π
, so:
Π
=
Π
c
+
Π
e

Inorganic Chemistry, Miessler et al.
Inorganic Chemistry, Miessler et al.
Basically, the pairing energy is:
higher when repulsion energy is high (i.e. many electrons paired), meaning pairing is unfavorable
lower when exchange energy is high (i.e. many electrons parallel and unpaired), meaning pairing is favorable
So, when it comes to putting it together for chromium... (
4
s
and
3
d
orbitals)
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
compared to
↑
↓
−−−−−
↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−

↑
↓
−−−−−
is more stable.
For simplicity, if we assume the
4
s
and
3
d
electrons aren't close enough in energy to be considered "nearly-degenerate":
The first configuration has
Π
=
10
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
1
↔
5
,
2
↔
3
,

2
↔
4
,
2
↔
5
,
3
↔
4
,
3
↔
5
,
4
↔
5
)
The second configuration has
Π
=
Π
c
+
6
Π
e
.
(Exchanges:
1
↔
2
,
1
↔
3
,
1
↔
4
,
2
↔
3
,
2
↔
4
,
3
↔
4
)
Technically, they are about
3.29 eV
apart (Appendix B.9), which means it takes about
3.29 V
to transfer a single electron from the
3
d
up to the
4
s
.
We could also say that since the
3
d
orbitals are lower in energy, transferring one electron to a lower-energy orbital is helpful anyways from a less quantitative perspective.
COMPLICATIONS DUE TO ORBITAL SIZE
Note that for example,
W
has a configuration of
[
X
e
]
5
d
4
6
s
2
, which seems to contradict the reasoning we had for
Cr
, since the pairing occurred in the higher-energy orbital.
But, we should also recognize that
5
d
orbitals are larger than
3
d
orbitals, which means the electron density can be more spread out for
W
than for
Cr
, thus reducing the pairing energy
Π
.
That is,
Π
W
5 0
2 years ago
Read 2 more answers
draw the organic product formed when 1−hexyne is treated with h2o, h2so4, and hgso4. click the draw structure button to launch t
V125BC [204]

The organic product formed when 1−hexyne is treated with H₂O, H₂SO₄, and HgSO₄ will be 2-hexanone (structure attached).

This reaction is an example of an oxymercuration reaction of the organic product 1−hexyne.

Oxymercuration is shown in three steps to the right. The nucleophilic double bond attacks the mercury ion, releasing an acetoxy group. The mercury ion's electron pair attacks carbon on the double bond, generating a positive-charged mercuronium ion. Mercury's dxz and 6s orbitals give electrons to the double bond's lowest unoccupied molecular orbitals.

In the second stage, the nucleophilic H₂O attacks the highly modified carbon, freeing its mercury-bonding electrons. Electrons neutralize mercury ions by collapsing. Water molecules have positive-charged oxygen.

In the third stage, the negatively charged acetoxy ion released in the first step attacks the hydrogen of the water group, generating the waste product HOAc. The two electrons in the oxygen-hydrogen link collapse into oxygen, neutralizing its charge and forming alcohol.

You can also learn about organic products from the following question:

brainly.com/question/13513481

#SPJ4

4 0
1 year ago
UUUUUULUHU Urgull (ULLO
timama [110]

Answer:

Plants are found in the domain of eukarya

7 0
2 years ago
What happens when sodium and sulfur combine
german

Answer:

It emits hydrogen sulfide...smells like rotten eggs..

ty:)pls let me know whether this is ryt:D

6 0
2 years ago
Read 2 more answers
What characteristic of gases makes them different from liquids or solids?
Marrrta [24]
<span>The particles are far apart from each other.</span>
5 0
3 years ago
Other questions:
  • As the block slides down the ramp, what type of energy conversion is occurring?
    15·1 answer
  • What does NO5 stand for?
    6·1 answer
  • Which term is described as a flat expanse of ocean floor
    10·2 answers
  • What do you think is the most important element and why? Include information
    6·1 answer
  • Where are most organisms that live in the ocean found ? why ?
    5·1 answer
  • What is the percent by mass of water in Na2SO4 • 10H2O?
    13·1 answer
  • A metalloid has properties of
    11·1 answer
  • How can scientific themes apply to many branches of science?
    7·2 answers
  • Select the correct answer.
    10·1 answer
  • Compound A has 4 moles of hydrogen, 4 moles of oxygen, and
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!