In physics, spacetime is any mathematical model which fuses the three dimensions of space and the one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why different observers perceive where and when events occur differently.
Question
What is the length of the pipe?
Answer:
(a) 0.52m
(b) f2=640 Hz and f3=960 Hz
(c) 352.9 Hz
Explanation:
For an open pipe, the velocity is given by

Making L the subject then

Where f is the frequency, L is the length, n is harmonic number, v is velocity
Substituting 1 for n, 320 Hz for f and 331 m/s for v then

(b)
The next two harmonics is given by
f2=2fi
f3=3fi
f2=3*320=640 Hz
f3=3*320=960 Hz
Alternatively,
and 

(c)
When v=367 m/s then

Answer:
accelerating
Explanation:
If we consider(v > u) Acceleration:
final velocity(v)= 14m/s
initial velocity(u)=10m/s
time taken(t)= 2 seconds
a=
=2m/s²
If we consider (v<u) Deceleration:
final velocity(v)= 3m/s
initial velocity(u)=9m/s
time taken(t)=2 seconds
a=
= -3m/s²
Answer:
The speed of light is faster in water. The Refractive index of water is 1.3 and the refractive index of glass is 1.5. From the equation n = c/v, we know that the refractive index of a medium is inversely proportional to the velocity of light in that medium. Hence, light travels faster in water.
Answer:
0.217 m/s
Explanation:
The protons in the beam passes undeflected when the electric force is equal to the magnetic force:
qE = qvB
where
q is the proton's charge
E is the magnitude of the electric field
v is the speed of the protons
B is the magnitude of the magnetic field
Re-arranging the equation,

And by substituting
E = 0.5 N/C
B = 2.3 T
We find
