1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mylen [45]
3 years ago
5

Water at a gauge pressure of 3.8 atm at street level flows in to an office building at a speed of 0.06 m/s through a pipe 5.0 cm

in diameter. The pipes taper down to 2.6cm in diameter by the top floor, 20 m above. Calculate the flow velocity and the gauge pressure in such a pipe on the top floor. Assume no branch pipe and ignore viscosity.
Physics
2 answers:
salantis [7]3 years ago
6 0

Answer:

The flow velocity in such a pipe at the top floor is v₂=  2.21m/s

The gauge pressure in such a pipe at the top floor is P₂= 1.8atm

..

Explanation:

The gauge pressure at the street:  P₁=3.8atm=3.8 *10^{5} pa=

The velocity of water  v₁=0.60m/s

The diameter of pipe:  d₁=50mm=50 * 10^{-3} m

The diameter of pipe after taper:  d₂=2.6cm=2.6*10^{-2}m

By using the continuity equation,

A₁v₁=A₂v₂ - - - - - - - -(1)

Here,  A₁  is the cross sectional area of the pipe, and  

A₂  is the cross-sectional area of pipe by top floor.

Substitute the values in equation 1,

\frac{\pi }{4}d₁²v₁=\frac{\pi }{4}d₂²v₂

v₂=d₁²v₁ /d₂²

Substitute the values in above equation,

v₂=\frac{0.6 * (50 *10^{-3} )^{2}}{(2.6 *10^{-2}) ^{2} }

v₂=\frac{1500*10^{-6} }{6.76 * 10 ^{-4} }

v₂=2.21m/s

The flow meter is 2.21m/s

By using Bernoulli's principle,  

ρ(v  ₁²/2)+ρgh₁+P₁=ρ(v₂²/2)+ρgh₂+P₂

Here,  

ρ  is the density of the water,  

h₁ is the elevation of the pipe at the street,  

h₂ is the elevation of the pipe by the top floor.

Arrange the equation in terms of gauge pressure,

ρ(v  ₁²/2)  +  ρgh₁  +  P₁=  ρ(v₂²/2) +  ρgh₂  +  P₂

P₂=P₁+ (ρ/2) (v₁²-v₂²) - ρgh₂

Substitute the values in above equation,

P₂=3.8*10^{5} -2262.05-196000

P₂=181737.95Pa=1.8atm

The gauge pressure in a pipe at the top floor is  1.8atm

.

-Dominant- [34]3 years ago
4 0

Answer:

a) Flow velocity = = 0.222 m/s

b) Gauge pressure = 1.84 atm

Explanation:

P₁ = 3.8 atm = 3.8 * 10⁵ Pa

v₁ = 0.06 m/s

d₁ = 5.0 cm

r₁ = 5/2 = 2.5 cm

At the gauge pressure, the water was at street level, h₁ = 0 m

d₂ = 2.6 cm

r₂ = 2.6/2 = 1.3 cm

h₂ = 20 m

Density of water, \rho = 1000 kg/m^{3}

Assumptions: Flow is steady and laminar, no viscosity, no branch pipe

a) calculate the flow velocity

To calculate the flow velocity, use the continuity equation

A₁v₁ = A₂v₂.............(1)

A₁ = πr²₁ = π(2.5)² = 6.25 π

A₂ = πr²₂ = π(1.3)² = 1.69π

Substituting the appropriate values into equation (1)

6.25 π * 0.06 = 1.69π * v₂

v₂ = 0.375/1.69

v₂ = 0.222 m/s

b) Calculate the gauge pressure

Using the Bernoulli equation:

\frac{P_{1} }{\rho g} + \frac{v_{1} ^{2} }{2g}  + h_{1} = \frac{P_{2} }{\rho g} + \frac{v_{2} ^{2} }{2g}  + h_{2}

\frac{3.8 * 10^{5}  }{1000 *9.8} + \frac{0.06 ^{2} }{2*9.8}  + 0 = \frac{P_{2} }{1000*9.8} + \frac{0.22^{2} }{2*9.8}  + 20

18.77322* 9800 = P_{2} \\P_{2}  = 183977.6 Pa

P_{2} = 1.84 atm

You might be interested in
Tom is throwing an baseball at an aluminum can,
pishuonlain [190]

Answer:

The question relates to the conservation of energy principle, the conservation of the linear momentum, and Newton's Laws of motion

Part A

1) Tom throwing a baseball at a can

The initial velocity of the baseball = v₂

The initial kinetic energy of the baseball, K.E.₂ = (1/2)·m₂·v₂²

∴ The final kinetic energy of the baseball, K.E.₂' = (1/2)·m₂·v₂'² < (1/2)·m₂·v₂²

Therefore, the energy of the ball before the collision is lesser than the energy of the ball after the collision

2) The evidence that would likely support the claim is that the baseball's height above the ground reduces rapidly immediately after the collision which is due to the reduced velocity, and therefore, the reduced (kinetic) energy

The final velocity of the baseball v₂' < v₂

Part B

1) The argument

The initial velocity of the can = v₁ = 0 (The can is initially  at rest)

The initial kinetic energy of the can, K.E.₁ = (1/2)·m₁·v₁² = 0

The final velocity of the can v₁' > v₁ = 0

∴ The final kinetic energy of the can, K.E.₁ = (1/2)·m₁·v₁² > 0

Given that the velocity of the can increases from zero to a positive value after collision with the baseball, the kinetic energy of the can is increased from zero before the collision to a positive value after the collision

2) An evidence in support of the argument is the motion of the can which was initially at rest which is an indication of increase in energy podded by the can

Explanation:

8 0
2 years ago
What will it be ? Plz help me
IgorC [24]

Answer:

For number 2, it will be 8.

3 0
2 years ago
a vehicle travels at a constant speed of 65 mph for 4 hours how far has this vehicle travelled in this time
Nostrana [21]
260 miles.................
3 0
3 years ago
A student adds ice to 150 mL of water. She observes that the temperature of the water decreases after 10 minutes. Which statemen
Step2247 [10]

Answer:

3- kinetic energy was transferred from the water to the ice

Explanation:

the kinetic energy in this situation is the molecules vibrating so the molecules in the ice absorb it and make the molecules not vibrate so it gets colder

3 0
3 years ago
A football punter wants to kick the ball so that it is in the air for 4.5 s and lands 50 m from where it was kicked. Assume that
irakobra [83]

Answer:

(a) The angle of projection is 63 degree.

(b) The velocity of projection is 24.5 m/s.

Explanation:

Height, h = 1 m

horizontal distance, d = 50 m

time, t = 4.5 s

Let the initial velocity is u and the angle is A.

(a) Horizontal distance = horizontal velocity x time

50 = u cos A x 4.5

u cos A = 11.1 .....(1)

Use second equation of motion in vertical direction

h = u t + 0.5 gt^2\\\\- 1 = u sin A \times 4.5 - 0.5 \times 9.8\times 4.5^2\\\\u sin A = 21.8 ..... (2)

Divide (2) by (1)

tan A = 1.97

A = 63 degree

(b) Substitute the value of A in equation (2)

u x sin 63 = 21.8

u = 24.5 m/s

7 0
2 years ago
Other questions:
  • A space station of diameter 20.0 meters is turning about its axis to simulate gravity at its center rim. How fast must it rotate
    9·1 answer
  • A 4.00 µf capacitor is connected to a 12.0 v battery.
    6·2 answers
  • What does it signify if point 2 shifts down and to the left?
    15·1 answer
  • Which change will cause an increase in the electric current produced through electromagnetic induction?using more wire loops in
    5·2 answers
  • Nearly all the light that strikes an opaque object will pass through and cast a shadow
    14·2 answers
  • What happens when saltwater is made? A) The salt crystals sink to the bottom of the water. B) The salt crystals split into ions.
    12·2 answers
  • Two charges of 15 pC and −40 pC are inside a cube with sides that are of 0.40-m length. Determine the net electric flux through
    12·1 answer
  • Most psychologists would fall under what category of care?
    12·2 answers
  • Pressure is always measured in comparison to a standard pressure.<br> True<br> False
    12·1 answer
  • When practicing deep breathing, it is best to repeat the steps for
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!