Answer:
As the velocity of light is constant so the acceleration of the light is equal to zero.
a= dv/dt
Explanation:
Answer:
0 (there is no speed)
Explanation:
If an object is at rest, it is not moving, and it doesn't have a speed, so the speed is zero.
Answer:
Explanation:
Force between two charges of q₁ and q₂ at distance d is given by the expression
F = k q₁ q₂ / d₂
Here force between charge q₁ = - 15 x 10⁻⁹ C and q₃ = 47 x 10⁻⁹ C when distance between them d = (1.66 - 1.24 ) = .42 mm
k = 1/ 4π x 8.85 x 10⁻¹²
putting the values in the expression
F = 1/ 4π x 8.85 x 10⁻¹² x - 15 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²
= 9 x 10⁹ x - 15 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²
= 35969.4 x 10⁻³ N .
force between charge q₂ = 34.5 x 10⁻⁹ C and q₃ = 47 x 10⁻⁹ C when distance between them d = ( 1.24 - 0 ) = 1.24 mm .
putting the values in the expression
F = 1/ 4π x 8.85 x 10⁻¹² x 34.5 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²
= 9 x 10⁹ x - 34.5 x 10⁻⁹ x 47 x 10⁻⁹ /( .42 x 10⁻³)²
= 82729.6 x 10⁻³ N
Both these forces will act in the same direction towards the left (away from the origin towards - ve x axis)
Total force = 118699 x 10⁻³
= 118.7 N.
Answer:
<u><em>Frictional force refers to the force generated by two surfaces that contacts and slide against each other.</em></u>
~Hope this helps~ T^T
Answer:
The the recoil velocity of the hunter is 0.056 m/s in opposite direction of the bullet.
Explanation:
Given;
mass of bullet, m₁ = 4.2 g = 0.0042 kg
mass of hunter + gun = 72.5 kg
velocity of the bullet, u = 965 m/s
Momentum of the bullet when it was fired;
P = mv
P = 0.0042 x 965
P = 4.053 kg.m/s
Determine the recoil velocity of the hunter.
Total momentum = sum of the individual momenta
Total momentum = momentum of the bullet + momentum of the hunter
Apply the principle of conservation of momentum, sum of the momentum is equal to zero.

Therefore, the the recoil velocity of the hunter is 0.056 m/s in opposite direction of the bullet.