<span>P = energy/t = 0.0025/1E-8 = 250000 W
I(ave) = P/A = 250000/(pi*0.425E-3^2) = 4.4056732E11 W/m^2
I(peak) = 2I(ave) = 8.8113463E11 W/m^2
Electric field E = sqrt(I(peak)*Z0) = 1.8219499E7 V/m, where
free-space impedance Z0 = sqrt(µ0/e0) = 376.73031 ohms</span>
Setting reference frame so that the x axis is along the incline and y is perpendicular to the incline
<span>X: mgsin65 - F = mAx </span>
<span>Y: N - mgcos65 = 0 (N is the normal force on the incline) N = mgcos65 (which we knew) </span>
<span>Moment about center of mass: </span>
<span>Fr = Iα </span>
<span>Now Ax = rα </span>
<span>and F = umgcos65 </span>
<span>mgsin65 - umgcos65 = mrα -------------> gsin65 - ugcos65 = rα (this is the X equation m's cancel) </span>
<span>umgcos65(r) = 0.4mr^2(α) -----------> ugcos65(r) = 0.4r(rα) (This is the moment equation m's cancel) </span>
<span>ugcos65(r) = 0.4r(gsin65 - ugcos65) ( moment equation subbing in X equation for rα) </span>
<span>ugcos65 = 0.4(gsin65 - ugcos65) </span>
<span>1.4ugcos65 = 0.4gsin65 </span>
<span>1.4ucos65 = 0.4sin65 </span>
<span>u = 0.4sin65/1.4cos65 </span>
<span>u = 0.613 </span>
Answer:
333.3 m
Explanation:
Given

Potential energy =
......Equation(1)
We know that
Potential energy=mgh
Kinetic energy =
Now From the Equation(1)

Answer:
5.01 J
Explanation:
Info given:
mass (m) = 0.0780kg
height (h) = 5.36m
velocity (v) = 4.84 m/s
gravity (g) = 9.81m/s^2
1. First, solve for Kinetic energy (KE)
KE = 1/2mv^2
1/2(0.0780kg)(4.84m/s)^2 = 0.91 J
so KE = 0.91 J
2. Next, solve for Potential energy (PE)
PE = mgh
(0.0780kg)(9.81m/s^2)(5.36m) = 4.10 J
so PE = 4.10 J
3. Mechanical Energy , E = KE + PE
Plug in values for KE and PE
KE + PE = 0.91J + 4.10 J = 5.01 J