Answer:
1.25 M
Explanation:
Step 1: Given data
Mass of KI (solute): 20.68 g
Volume of the solution: 100 mL (0.100 L)
Step 2: Calculate the moles of solute
The molar mass of KI is 166.00 g/mol.
20.68 g × 1 mol/166.00 g = 0.1246 mol
Step 3: Calculate the molar concentration of KI
Molarity is equal to the moles of solute divided by the liters of solution.
M = 0.1246 mol/0.100 L= 1.25 M
Explanation:
Mg(s) + Cr(C2H3O2)3 (aq)
Overall, balanced molecular equation
Mg(s) + Cr(C2H3O2)3(aq) --> Mg(C2H3O2)3(aq) + Cr(s)
To identify if an element has been reduced or oxidized, the oxidation number is observed in both the reactant and product phase.
An increase in oxidation number denotes that the element has been oxidized.
A decrease in oxidation number denotes that the element has been reduced.
Oxidation number of Mg:
Reactant - 0
Product - +3
Oxidation number of Cr:
Reactant - +3
Product - 0
Note: C2H3O2 is actually acetate ion; CH3COO- The oxidatioon number of C, H and O do not change.
Oxidized : Mg
Reduced : Cr
Answer:
Zinc nitrate gives white ppt. which dissolves in excess ammonium hydroxide and produce a colorless solution whereas lead nitrate gives a chalky white ppt. of lead hydroxide which doesnot dissolve.
Explanation:
Hope this helps :)