1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksandrvk [35]
3 years ago
13

You are generating traveling waves on a stretched string by wiggling one end. If you suddenly begin to wiggle more rapidly witho

ut appreciably affecting the tension, you will cause the waves to move down the string a. faster than before.b. at the same speed as before.c. slower than before.
Physics
1 answer:
german3 years ago
6 0

Answer:

Option as B is correct At the same speed as before

Explanation:

As we know the relation between speed of the wave and tension in string

The speed of wave in stretched string

ν = \sqrt{\frac{T}{\mu} }  

speed of wave is the directly proportional to the square root of tension as mentioned in question tension of string is unaffected when in linear mass density is constant,  so we can say that the  speed of wave will  be the same  

Option as B is correct At the same speed as before  

You might be interested in
Which property of potential energy distinguishes it from kinetic energy
Bas_tet [7]

Answer:

Shape and position

Explanation:

Hope this helps! :)

7 0
2 years ago
Djejfje kdjejfjeofjod fjdidjskd.jdjdjdjdp
Mariana [72]

YUHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH gbghdwqygfywefyugsadfyuyuqwbhfbds       hehrwuhuaijkfa

5 0
3 years ago
Explain different types of thermometer and their thermometry substance​
Rudiy27

Answer:

Explained below

Explanation:

1) Liquid in glass thermometer: This type of thermometer is used primarily to measure the temperatures from inspection of changes in volume of liquid.

Thermometry substance is mercury or alcohol

2) Gas thermometer: This type is used to measure temperature as a result of changes in gas pressure or volume.

Thermometry substance is Gas.

3) Resistance thermometer: This type is used to measure temperature due to changes in electric resistance.

Thermometry substance is Resistance wire.

4) Thermocouple thermometer: This type is used to measure the temperature due to changes in electrical potential difference occurring between two metal junctions.

Thermometry substance is two wires that are dissimilar.

5) Bimetallic thermometer: This is a type of thermometer that measures temperature by converting temperature into mechanical displacement by making use of Bimetallic strip.

Thermometry substance is two metals that are dissimilar.

3 0
3 years ago
What must be the length of a simple pendulum if its oscillation frequency is to be equal to that of an air-track glider of mass
Anvisha [2.4K]

Answer:

the length of the simple pendulum is 0.25 m.

Explanation:

Given;

mass of the air-track glider, m = 0.25 kg

spring constant, k = 9.75 N/m

let the length of the simple pendulum = L

let the frequency of the air-track glider which is equal to frequency of simple pendulum = F

The oscillation frequency of air-track glider is calculated as;

F = \frac{1}{2\pi } \sqrt{\frac{k}{m} } \\\\F = \frac{1}{2\pi } \sqrt{\frac{9.75}{0.25} } \\\\F = 0.994 \ Hz

The frequency of the simple pendulum is given as;

F = \frac{1}{2\pi} \sqrt{\frac{g}{l} } \\\\2\pi(F) = \sqrt{\frac{g}{l} } \\\\2\pi (0.994) = \sqrt{\frac{9.8}{l} } \\\\6.2455 = \sqrt{\frac{9.8}{l} } \\\\(6.2455)2 = \frac{9.8}{l} \\\\39.006 = \frac{9.8}{l} \\\\l = \frac{9.8}{39.006} \\\\l = 0.25 \ m

Thus, the length of the simple pendulum is 0.25 m.

8 0
2 years ago
Block B is attached to a massless string of length L = 1 m and is free to rotate as a pendulum. The speed of block A after the c
Amanda [17]

Complete Question

The diagram for this question is shown on the first uploaded image

Answer:

The minimum velocity of A is  v_A= 4m/s

Explanation:

From the question we are told that

    The length of the string is  L = 1m

     The initial speed of block A is u_A

     The final speed of block A is  v_A = \frac{1}{2}u_A

      The initial speed of block B is u_B = 0

      The mass of block A  is  m_A = 7kg  gh

      The mass of block B is  m_B  = 2 kg

According to the principle of conservation of momentum

       m_A u_A + m_B u_B = m_Bv_B + m_A \frac{u_A}{2}

Since block B at initial is at rest

       m_A u_A  = m_Bv_B + m_A \frac{u_A}{2}

      m_A u_A  - m_A \frac{u_A}{2} = m_Bv_B

          m_A \frac{u_A}{2} = m_Bv_B

  making v_B the subject of the formula

             v_B =m_A \frac{u_A}{2 m_B}

Substituting values

               v_B =\frac{7 u_A}{4}  

This v__B is the velocity at bottom of the vertical circle just at the collision with mass A

Assuming that block B is swing through the vertical circle(shown on the second uploaded image ) with an angular velocity  of v__B' at  the top of the vertical circle  

 The angular centripetal acceleration  would be mathematically represented

                   a= \frac{v^2_{B}'}{L}

Note that  this acceleration would be toward the center of the circle

      Now the forces acting at the top of the circle can be represented mathematically as

         T + mg = m \frac{v^2_{B}'}{L}

    Where T is the tension on the string

  According to the law of energy conservation

The energy at  bottom of the vertical circle   =  The energy at the top of

                                                                                the vertical circle

   This can be mathematically represented as

                 \frac{1}{2} m(v_B)^2 = \frac{1}{2} mv^2_B' + mg 2L

From above  

                (T + mg) L = m v^2_{B}'

Substitute this into above equation

             \frac{1}{2} m(\frac{7 v_A}{4} )^2 = \frac{1}{2} (T + mg) L  + mg 2L  

             \frac{49 mv_A^2}{16}  = \frac{1}{2} (T + mg) L + mg 2L

          \frac{49 mv_A^2}{16}  = T + 5mgL

The  value of velocity of block A needed to cause B be to swing through a complete vertical circle is would be minimum when tension on the string due to the weight of B is  zero

        This is mathematically represented as

                      \frac{49 mv_A^2}{16}  = 5mgL

making  v_A the subject

            v_A = \sqrt{\frac{80mgL}{49m} }

substituting values

          v_A = \sqrt{\frac{80* 9.8 *1}{49} }

              v_A= 4m/s

     

6 0
3 years ago
Other questions:
  • Kayla drew a diagram to compare convex and concave lenses. Which labels belong in the areas marked X, Y, and Z? X: Causes light
    6·1 answer
  • Which is true
    9·2 answers
  • If you were to stir salt in water until the salt disappeared, which is the solute?
    7·2 answers
  • The magnitude of the magnetic force on a current-carrying wire held in a magnetic
    14·1 answer
  • Which group of stars is represented by the line image
    10·2 answers
  • A bell with a fundamental frequency of 880 Hz is moving toward an observer at 3.5 m/s. If the speed of sound is 343 m/s, what pi
    13·1 answer
  • What has happened to the amount of water in the high plains aquifer over time
    13·1 answer
  • The centripetal force acting on the space shuttle
    13·1 answer
  • What is the main organ of the circulatory system?
    7·2 answers
  • A spring is 6.0cm long when it is not stretched, and 10cm long when a 7.0N force is applied. What force is needed to make it 20c
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!