Explanation:
The O atom is sp3 in a water molecule, with two sigma bonds and two lone pairs of electrons like that in water. The steric integer is thus 4, and its structure is tetrahedral.
The C atom is sp hybridised into two identical bonds and two identical bonds in acetylene.
The steric integer is therefore 2 because only sigma bonds are engaged in deciding hybridization, and its structure is linear.
The C atom is sp2 hybridised in ethene with single pi bond and three sigma identical bonds.
Thus the steric integer is 3, and its structure is planar trigonal.
The C atom is sp2 hybridized in ethene, with one pi bond and three sigma identical bonds.
The steric integer would therefore be 3 and its structure is planar trigonal.
The O atom is sp3 in a water molecule with two bond pairs and two lone pairs of electrons like that. The steric integer is thus 4, and its structure is tetrahedral.
The C atom is sp3 in a methane ring, with 4 bond pairs and no solitary pairs of electrons like that. The steric integer is thus 4, and its structure is tetrahedral.
Answer:
I think it's the second answer --If you increase the acidity..
I hope answer I can answer your question!
Any type of medical scientist works.
A pure crystalline substance is a substance with an almost perfect regular and periodic pattern in a solid state. This makes this type of substance a hard one compared to an amorphous substance which is soft because of the irregular pattern within.
Answer:
The answers are in the explanation.
Explanation:
The energy required to convert 10g of ice at -10°C to water vapor at 120°C is obtained per stages as follows:
Increasing temperature of ice from -10°C - 0°C:
Q = S*ΔT*m
Q is energy, S specific heat of ice = 2.06J/g°C, ΔT is change in temperature = 0°C - -10°C = 10°C and m is mass of ice = 10g
Q = 2.06J/g°C*10°C*10g
Q = 206J
Change from solid to liquid:
The heat of fusion of water is 333.55J/g. That means 1g of ice requires 333.55J to be converted in liquid. 10g requires:
Q = 333.55J/g*10g
Q = 3335.5J
Increasing temperature of liquid water from 0°C - 100°C:
Q = S*ΔT*m
Q is energy, S specific heat of ice = 4.18J/g°C, ΔT is change in temperature = 100°C - 0°C = 100°C and m is mass of water = 10g
Q = 4.18J/g°C*100°C*10g
Q = 4180J
Change from liquid to gas:
The heat of vaporization of water is 2260J/g. That means 1g of liquid water requires 2260J to be converted in gas. 10g requires:
Q = 2260J/g*10g
Q = 22600J
Increasing temperature of gas water from 100°C - 120°C:
Q = S*ΔT*m
Q is energy, S specific heat of gaseous water = 1.87J/g°C, ΔT is change in temperature = 20°C and m is mass of water = 10g
Q = 1.87J/g°C*20°C*10g
Q = 374J
Total Energy:
206J + 3335.5 J + 4180J + 22600J + 374J =
30695.5J =
30.7kJ