Democritus was the first to propose the idea of the atom. He said the atom was just this tiny, solid sphere. However, he used no scientific evidence to support his claim, so a guy named John Dalton did some experimenting and basically backed up Democritus' claim with evidence. Then, a guy named J.J. Thompson came along and said the atom was not solid and that is consisted of tiny negatively charged particles(electrons) and he came up with the Plum Pudding model which is just a tiny sphere with a punch of random scattered dots in it. After that, Ernest Rutherford did experiments and found that the tiny sphere is made up of mostly empty space with a tiny, dense, positively charged sphere inside of it, and the negatively charged particles just randomly float around it. Neils Bohr then said that the electrons take specific, circular, evenly spaced paths. Then, finally, we come to the Quantum Mechanical Model which is the one accepted today. This model basically vetos Bohr's idea and has a nucleus inside of an electron cloud, which is where the electrons are found.
<span>The action that researchers take to make advances in science would be conducting experiments to test their hypothesis. By doing such, they are able to know whether the hypothesis is true or not. Hope this answers the question. Have a nice day.</span>
Answer: On increasing temperature at which adsorption is carried out decreases the extent of physisorption.
Explanation:
An adsorption where molecules of the adsorbate are placed or held on the surface of adsorbent by Vander waals forces is called physisorption.
There is basically physical bonding between the molecules of gas to the surface of a solid or liquid.
Physisorption is reversible in nature and occurs at low temperatures.
It is not specific in nature which means that all gases are adsorbed on the surface of every solid substance to some extent.
Thus, we can conclude that on increasing temperature at which adsorption is carried out decreases the extent of physisorption.
Answer:
Fluorine
Explanation:
These particles stick in the atoms and make them radioactive.
Answer:
2MnO2 + H2O => Mn2O3 + 2OH is the correct balanced equation.