Work is measured in joules. hope this helps!
Answer:
9.29 mol
Explanation:
Given data:
Number of moles = ?
Mass = 148.6 g
Solution:
Number of moles = mass/ molar mass
Molar mass of CH₄ = 16 g/mol
Now we will put the values in formula.
Number of moles = 148.6 g/ 16 g/mol
Number of moles = 9.29 mol
Thus 148.6 g have 9.29 moles.
I believe this question has the following five choices to
choose from:
>an SN2 reaction has occurred with inversion of
configuration
>racemization followed by an S N 2 attack
>an SN1 reaction has taken over resulting in inversion
of configuration
>an SN1 reaction has occurred due to carbocation
formation
>an SN1 reaction followed by an S N 2 “backside”
attack
The correct answer is:
an SN1 reaction has occurred due to carbocation formation
Answer:
20 mL OF 6 M HYDROCHLORIC ACID WILL BE NEEDED
Explanation:
M1 V1 = M2 V2
M1 = Molarity of sodium hydroxide = 3 M
V1 = volume of sodium hydroxide = 40 mL
M2 = Molarity of hydrochloric acid = 6 M
V2 = Volume of hydrochloric acid = unknown
Rearranging the equation, we have:
V2 = M1 V1 / M2
V2 = 3 * 40 mL / 6
V2 = 120 / 6
V2 = 20 mL
To precipitate the benzoic acid by 6 M of hydrochloric acid, 20 mL volume will be needed.
Explanation:
The solution of the lactic acd and sodium lactate is referred to as a buffer solution.
A buffer solution is an aqueous solution consisting of a mixture of a weak acid and its conjugate base, or vice versa. In this case, the weak acid is the lactic acid and the conjugate base is the sodium lactate.
Buffer solutions are generally known to resist change in pH values.
When a strong base (in this case, NaOH) is added to the buffer, the lactic acid will give up its H+ in order to transform the base (OH-) into water (H2O) and the conjugate base, so we have:
HA + OH- → A- + H2O.
Since the added OH- is consumed by this reaction, the pH will change only slightly.
The NaOH reacts with the weak acid present in the buffer sollution.