Work = Force x Distance
Assuming that this work is being done parallel to the displacement that is, but under that assumption:
W = (50)(10)
W = 500 J
Fossil fuels like coal, natural gas and oil.
Hopes this helps!
A 150-g metallic rod with a specific heat of 0.11 cal/g.°C absorbs 82.5 calories of heat and its temperature increases from 20 °C to 25 °C.
<h3>What is specific heat?</h3>
It is the heat required to raise the temperature of the unit mass of a given substance by a given amount (usually one degree).
A metallic rod of mass 150 g (m) absorbs 82.5 cal of heat (Q) and its temperature raises from 20 °C to 25 °C. We can calculate the specific heat (c) of the metal using the following expression.
Q = c × m × ΔT
c = Q / m × ΔT
c = 82.5 cal / 150 g × (25 °C - 20 °C) = 0.11 cal/g.°C
A 150-g metallic rod with a specific heat of 0.11 cal/g.°C absorbs 82.5 calories of heat and its temperature increases from 20 °C to 25 °C.
Learn more about specific heat here: brainly.com/question/21406849
#SPJ1
A meter is 100 meters. So a hundredth of a meter stick is a centimeter.<span />
When wool is rubbed with a balloon, the wool is left with a positive charge as electrons have travelled from the wool to the balloon which means the balloon now has a negative charge.
Now that the balloon has a negative charge, you need to know:
The tissue paper originally contains electrons and protons
The fact that the balloon has a negative charge, it will ATTRACT protons because protons are POSITIVE and electrons are NEGATIVE.
So once they are attracted, they will move closer to one another.