Answer: 2000 watts
Explanation:
Given that,
power = ?
Weight of object = 200-N
height = 4 m
Time = 4 s
Power is the rate of work done per unit time i.e Power is simply obtained by dividing work by time. Its unit is watts.
i.e Power = work / time
(since work = force x distance, and weight is the force acting on the object due to gravity)
Then, Power = (weight x distance) / time
Power = (200N x 4m) / 4s
Power = 8000Nm / 4s
Power = 2000 watts
Thus, 2000 watts of power is needed to lift the object.
Answer:
Rube Goldberg Machine is "a comically involved, complicated invention, laboriously contrived to preform a simple operation." 2. What are the 6 Simple Machines? A. The 6 Simple Machines are: wedge, screw, lever, wheel and axel, inclined plane and pulley.
Answer:
2.1km
Explanation:
Ill take it as u are talking about the displacement
Since displacement has negatives and positves
5.9 - 3.8 = 2.1km
On a similar problem wherein instead of 480 g, a 650 gram of bar is used:
Angular momentum L = Iω, where
<span>I = the moment of inertia about the axis of rotation, which for a long thin uniform rod rotating about its center as depicted in the diagram would be 1/12mℓ², where m is the mass of the rod and ℓ is its length. The mass of this particular rod is not given but the length of 2 meters is. The moment of inertia is therefore </span>
<span>I = 1/12m*2² = 1/3m kg*m² </span>
<span>The angular momentum ω = 2πf, where f is the frequency of rotation. If the angular momentum is to be in SI units, this frequency must be in revolutions per second. 120 rpm is 2 rev/s, so </span>
<span>ω = 2π * 2 rev/s = 4π s^(-1) </span>
<span>The angular momentum would therefore be </span>
<span>L = Iω </span>
<span>= 1/3m * 4π </span>
<span>= 4/3πm kg*m²/s, where m is the rod's mass in kg. </span>
<span>The direction of the angular momentum vector - pseudovector, actually - would be straight out of the diagram toward the viewer. </span>
<span>Edit: 650 g = 0.650 kg, so </span>
<span>L = 4/3π(0.650) kg*m²/s </span>
<span>≈ 2.72 kg*m²/s</span>
The speed of water can be split into vertical and horizontal speed components:

Due to the force of gravity, the y component will be parabolic. The x component will be linear:

To find when the water hits the ground 2.5m away, set y= 0 and x = 2.5