1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Montano1993 [528]
3 years ago
9

You hear a sound with a frequency of 256 Hz. The amplitude of the sound increases and decreases periodically: it takes 2 seconds

for the sound to go from loud to soft and back to loud. This sound can be thought of as a sum of two waves with frequencies:
(A) 256 Hz and 2 Hz.
(B) 254 Hz and 258 Hz.
(C) 255 Hz and 257 Hz.
(D) 255.5 Hz and 256.5 Hz.
(E) 255.75 Hz and 256.25 Hz.
Physics
1 answer:
german3 years ago
3 0

To solve this problem it is necessary to take into account the concepts related to frequency and period, and how they are related to each other.

The relationship that defines both agreements is given by the equation,

f_{beat}=\frac{1}{T}

Then the frequency for the previous period given (2sec) is

f_{beat}=\frac{1}{2}

f_{beat} = 0.5Hz

The beat frequency of two frequencies is equal to the difference between the two frequencies, then

f_{beat} = |f_1-f_2|\\f_{beat} = |256Hz-2Hz|\\f_{beat} = 254Hz

<em>Hence option A is incorrect.</em>

We can do this process for 254Hz as f_1 and 258 Hz for f_2 , then

f_{beat} =|254Hz-258Hz|

f_{beat} = 4Hz

<em>Hence option B is incorrect. </em>

We can also do this process for 255Hz as  f_1 and 257 Hz for f_2 , then

f_{beat} =|255Hz-257Hz|

f_{beat} = 2Hz

<em>Hence option C is incorrect. </em>

We can also do this process for 255.5Hz as f_1 and 256.5 Hz for f_2, then

f_{beat} =|255.5Hz-256.5Hz|\\f_{beat} = 1Hz

<em>Hence option D is incorrect. </em>

We can also do this process for 255.75Hz as f_1 and 256.25 Hz for f_2, then

f_{beat} =|255.75Hz-256.25Hz|\\f_{beat} = 0.5Hz

<em>Hence option E is incorrect. </em>

Therefore the sum of the frequencies in the sound wave would be 256.25Hz and 255.75Hz

You might be interested in
____________ are used to calculate the distance a continent has moved in a year. a. Space satellites c. Laser beams b. Mirrors d
Law Incorporation [45]
<span> Space satellites, laser beams, mirrors</span> are used to calculate the distance a continent has moved in a year.

Therefore, your correct answer would be "all of the above".
4 0
3 years ago
Certain gases in the atmosphere trap heat on Earth.
Mamont248 [21]
The answer is <span>A.)the greenhouse effect 
</span>
7 0
3 years ago
Read 2 more answers
These the flow of electrons (the current) and where some of the electrons' energy gets converted into heat. (Lessons 5.01-5.03)
liq [111]

Answer:

Conductors.

Explanation:

Conductors allow the flow of electrons i. e. the current and where some of the electrons energy gets converted into heat while some electrons energy converted into light. Conductors are the materials which has the ability to allow heat and electricity to flow through them. Metals such as gold, copper, Silver, Aluminum, Mercury, Steel, Iron and salty water etc are good conductors of heat and electricity.

3 0
3 years ago
Which force is greater the earth’s pull on the moon or the moon’s pull on the earth
Vitek1552 [10]

Answer:

The earth's pull on the moon

Explanation:

Earth exerts a gravitational pull on the moon 80 times stronger than the moon's pull on the Earth.

7 0
3 years ago
A student pushes a 0.2 kg box against a spring causing the spring to compress 0.15 m. When the spring is released, it will launc
german

Answer:

The maximum height the box will reach is 1.72 m

Explanation:

F = k·x

Where

F = Force of the spring

k = The spring constant = 300 N/m

x  = Spring compression or stretch = 0.15 m

Therefore the force, F of the spring = 300 N/m×0.15 m = 45 N

Mass of box = 0.2 kg

Work, W, done by the spring = \frac{1}{2} kx^2 and the kinetic energy gained by the box is given by KE = \frac{1}{2} mv^2

Since work done by the spring = kinetic energy gained by the box we have

\frac{1}{2} mv^2 =  \frac{1}{2} kx^2  therefore we have v = \sqrt{\frac{kx^2}{m} } = x\sqrt{\frac{k}{m} } = 0.15\sqrt{\frac{300}{0.2} } = 5.81 m/s

Therefore the maximum height is given by

v² = 2·g·h or h = \frac{v^2}{2g} = \frac{5.81^{2} }{2*9.81} = 1.72 m

6 0
3 years ago
Other questions:
  • Water waves in a small tank are .06 m long. They pass a given point at a rate of 14.8 waves every three seconds. What is the spe
    8·1 answer
  • By what factor does the drag force on a car increase as it goes from 65 to 110 km/h?
    8·2 answers
  • In an alcohol-in-glass thermometer, the alcohol column has length 12.66 cm at 0.0 ∘C and length 22.49 cm at 100.0 ∘C. Part A Wha
    13·1 answer
  • Suppose you throw a ball vertically upward with a speed of 49 m/s. Neglecting air friction, what would be the height of the ball
    10·1 answer
  • Which statement correctly describes protons? They have no charge and are present in the nucleus of an atom. They have a negative
    7·2 answers
  • Simple pendulum, is show in several states In case A the mass is travelling back down to the bottom and is in between the bottom
    14·1 answer
  • Please select ALL THAT APPLY
    13·1 answer
  • Topic: Chapter 10: Projectory or trajectile?
    13·1 answer
  • What is important when it comes to winning
    8·2 answers
  • What did hegel and kant have in common? they both were determined to disprove marxist theory. they both thought that only histor
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!