Convert the given in SI units.
(44 ft/sec)(1 m/ 3.28 ft) = 13.41 m/sec
The distance traveled and the initial velocity can be related through the equation,
d = (Vf)² - (Vi)²/ 2a
where d is the distance, Vf is the final velocity, Vi is the initial velocity, a is the acceleration due to gravity. Substituting the known values from the given above,
d = ((0 m/s)² - (13.41 m/s)²)/ 2(-9.8 m/s²)
The value of d from the equation,
d = 9.17 meters
Convert this to feet,
d = (9.17 m)(3.28 ft / 1 m) = 30 ft
Answer: 30 ft
A salt is dissolved in water which has a freezing point of 0 degrees celsius. the freezing point of the solution would be dependent on the concentration of the salt in the solution. It is explained by the colligative properties. These <span>are </span>properties<span> that depend upon the concentration of solute molecules or ions, but not upon the identity of the solute. Hope this answers the question.</span>
A beat is an interference pattern between two sounds of slightly different frequencies, perceived as a periodic variation in volume whose rate is the difference of the two frequencies. Frequency beat is equal to,

The reference frequency in our case would be 392Hz, and since there is the possibility of the upper and lower range for the amount of beats per second that the two possible frequencies are heard would be


Therefore the two possible frequencies the piano wire is vibrating at, would be 396Hz and 388Hz
Multiply it by a fraction equal to ' 1 ', like this:
(14.8 cm) x (1 meter/100 cm) = 14.8/100 = 0.148 meter
The best frequency should be 70 Hz you simply find the difference between 280 Hz and 210 Hz