Answer:
Tha ball- earth/floor system.
Explanation:
The force acting on the ball is the force of gravity when ignoring air resistance. At the moment the player releases the ball, until it reaches the top of its bounce, the small system for which the momentum is conserved is the ball- floor system. The balls exerts and equal and opposite force on the floor. <u>Here the ball hits the floor, because in any collision the momentum is conserved. Moment of the ball -floor system is conserved</u>. Mutual gravitation bring the ball and floor together in one system. As the ball moves downwards, the earth moves upwards, although with an acceleration on the order of 1025 times smaller than that of the ball. The two objects meet, rebound and separate.
Answer:
a) a = - 0.106 m/s^2 (←)
b) T = 12215.1064 N
Explanation:
If
F₁ = 9*1350 N = 12150 N (→)
F₂ = 9*1365 N = 12285 N (←)
∑Fx = M*a = (M₁ +M₂)*a (→)
F₁ - F₂ = (M₁ +M₂)*a
→ a = (F₁ - F₂) / (M₁ +M₂ ) = (12150-12285)N/(9*68+9*73)Kg
→ a = - 0.106 m/s^2 (←)
(b) What is the tension in the section of rope between the teams?
If we apply ∑Fx = M*a for the team 1
F₁ - T = - M₁*a ⇒ T = F₁ + M₁*a
⇒ T = 12150 N + (9 * 68 Kg)*(0.106 m/s^2)
⇒ T = 12215.1064 N
If we choose the team 2 we get
- F₂ + T = - M₂*a ⇒ T = F₂ - M₂*a
⇒ T = 12285 N - (9 * 73 Kg)*(0.106 m/s^2)
⇒ T = 12215.1064 N
Answer:
c
Explanation:
it's the only one that makes sense
<u>Answer:</u> The ball is travelling with a speed of 5.5 m/s after hitting the <u>bottle.</u>
<u>Explanation:</u>
To calculate the speed of ball after the collision, we use the equation of law of conservation of momentum, which is given by:

where,
are the mass, initial velocity and final velocity of ball.
are the mass, initial velocity and final velocity of bottle.
We are given:

Putting values in above equation, we get:

Hence, the ball is travelling with a speed of 5.5 m/s after hitting the bottle.