Answer:
I believe the answer isT 2.
Explanation:
he formula for IMA of a first-class lever is effort-distance/resistance-distance.
Answer:
The precipitate is CuS.
Sulfide will precipitate at [S2-]= 3.61*10^-35 M
Explanation:
<u>Step 1: </u>Data given
The solution contains 0.036 M Cu2+ and 0.044 M Fe2+
Ksp (CuS) = 1.3 × 10-36
Ksp (FeS) = 6.3 × 10-18
Step 2: Calculate precipitate
CuS → Cu^2+ + S^2- Ksp= 1.3*10^-36
FeS → Fe^2+ + S^2- Ksp= 6.3*10^-18
Calculate the minimum of amount needed to form precipitates:
Q=Ksp
<u>For copper</u> we have: Ksp=[Cu2+]*[S2-]
Ksp (CuS) = 1.3*10^-36 = 0.036M *[S2-]
[S2-]= 3.61*10^-35 M
<u>For Iron</u> we have: Ksp=[Fe2+]*[S2-]
Ksp(FeS) = 6.3*10^-18 = 0.044M*[S2-]
[S2-]= 1.43*10^-16 M
CuS will form precipitates before FeS., because only 3.61*10^-35 M Sulfur Ions are needed for CuS. For FeS we need 1.43*10^-16 M Sulfur Ions which is much larger.
The precipitate is CuS.
Sulfide will precipitate at [S2-]= 3.61*10^-35 M
A typical human hair is about 1 million carbon-12 atoms JUST IN WIDTH.
<h3>
Answer:</h3>
322.7 kW
<h3>
Explanation:</h3>
- Power refers to the rate at which work is done.
- Therefore; Power = Work done ÷ time
- It is measured in joules per seconds or Watts
In this case, we are required to convert 0.3227 MW to kilowatts
We need to know that;
- 10^6 watts = 1 Megawatts(MW)
- 10^3 Watts = 1 kilowatts (kW)
Therefore;
10^3 kW = 1 MW
Therefore, the suitable conversion factor is 10^3kW/MW
Hence;
0.3227 MW is equivalent to;
= 0.3227 MW × 10^3kW/MW
= 322.7 kW
Thus, the peak power output is 322.7 kW