Answer:
The pH of a solution is simply a measure of the concentration of hydrogen ions,
H
+
, which you'll often see referred to as hydronium cations,
H
3
O
+
.
More specifically, the pH of the solution is calculated using the negative log base
10
of the concentration of the hydronium cations.
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
pH
=
−
log
(
[
H
3
O
+
]
)
a
a
∣
∣
−−−−−−−−−−−−−−−−−−−−−−−−
Now, we use the negative log base
10
because the concentration of hydronium cations is usually significantly smaller than
1
.
As you know, every increase in the value of a log function corresponds to one order of magnitude.
Explanation:
Use the ICE table approach as solution:
PbSO₄ --> Pb²⁺ + SO₄²⁻
I - 0 0
C - +s +s
E - s s
Ksp = [Pb²⁺][SO₄²⁻]
1.82×10⁻⁸ = s²
Solving for s,
s = <em>1.35×10⁻⁴ M</em>
Answer:
True
Explanation:
In pi bonds, the electron density concentrates itself between the atoms of the compound but are present on either side of the line joining the atoms. Electron density is found above and below the plane of the line joining the internuclear axis of the two atoms involved in the bond.
Pi bonds usually occur by sideways overlap of atomic orbitals and this leads to both double and triple bonds.
Answer:
Hailey the answer is D.
Explanation:
if liquid to solid is exothermic then then the other way around would be endorhermic
Answer:
The beaker holds 307.94 mL
Explanation:
As we know that the volume that beaker hold is the volume of water that occupied by it.
For this first we have to find mass of the water in the beaker
This can be calculated by the subtraction of beaker's weight from the weight of beaker and water.
weight of water (m) = total weight - weight of beaker
Empty weight of beaker = 25.91 g
Weight of beaker with water = 333.85 g
Weight of water = 333.85 - 25.91 = 307.94 g
Density of water = 1 g/mL
We have
Mass = Volume x density
307.94 = Volume x 1
Volume = 307.94 mL
The beaker holds 307.94 mL