Answer:
Firsthand association assigns energy throughout conduction. Radiation transpires when particles consume energy that progresses as a wave. The heat will run from the h2O to the ice continuously until the ice has absolutely melted so both elements have reached the same temperature.
Explanation:
Answer:
1.327 g Ag₂CrO₄
Explanation:
The reaction that takes place is:
- 2AgNO₃(aq) + K₂CrO₄(aq) → Ag₂CrO₄(s) + 2KNO₃(aq)
First we need to <em>identify the limiting reactant</em>:
We have:
- 0.20 M * 50.0 mL = 10 mmol of AgNO₃
- 0.10 M * 40.0 mL = 4 mmol of K₂CrO₄
If 4 mmol of K₂CrO₄ were to react completely, it would require (4*2) 8 mmol of AgNO₃. There's more than 8 mmol of AgNO₃ so AgNO₃ is the excess reactant. <em><u>That makes K₂CrO₄ the limiting reactant</u></em>.
Now we <u>calculate the mass of Ag₂CrO₄ formed</u>, using the <em>limiting reactant</em>:
- 4 mmol K₂CrO₄ *
= 1326.92 mg Ag₂CrO₄
- 1326.92 mg / 1000 = 1.327 g Ag₂CrO₄
This is an application of Le Chatlier's principle: What happens when we add a reagent to one side of an equation? The reaction will shift to the other side. So heat is a reactant and we're adding more of it, the reaction must therefore, shift to the right ( or the products side).
The answer is sodium (Na)
<em>Let me know if u have anymore questions ☺</em>