1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alborosie
3 years ago
12

Two 60.o-g arrows are fired in quick succession with an initial speed of 82.0 m/s. The first arrow makes an initial angle of 24.

0° above the horizontal, and the second arrow is fired straight upward. Assume an isolated system and choose the reference configuration at the initial position of the arrows.
(a) what is the maximum height of each of the arrows?
(b) What is the total mechanical energy of the arrow-Earth system for each of the arrows at their maximum height?
Physics
1 answer:
olganol [36]3 years ago
7 0

Answer:

a) The first arrow reaches a maximum height of 56.712 meters, whereas second arrow reaches a maximum height of 342.816 meters, b) Both arrows have a total mechanical energy at their maximum height of 201.720 joules.

Explanation:

a) The first arrow is launch in a parabolic way, that is, horizontal speed remains constant and vertical speed changes due to the effects of gravity. On the other hand, the second is launched vertically, which means that velocity is totally influenced by gravity. Let choose the ground as the reference height for each arrow. Each arrow can be modelled as particles and by means of the Principle of Energy Conservation:

First arrow

U_{g,1} + K_{x,1} + K_{y,1} =  U_{g,2} + K_{x,2} + K_{y,2}

Where:

U_{g,1}, U_{g,2} - Initial and final gravitational potential energy, measured in joules.

K_{x,1}, K_{x,2} - Initial and final horizontal translational kinetic energy, measured in joules.

K_{y,1}, K_{y,2} - Initial and final vertical translational kinetic energy, measured in joules.

Now, the system is expanded and simplified:

m \cdot g \cdot (y_{2} - y_{1}) + \frac{1}{2}\cdot m \cdot (v_{y, 2}^{2} -v_{y, 1}^{2}) = 0

g \cdot (y_{2}-y_{1}) = \frac{1}{2}\cdot (v_{y,1}^{2}-v_{y,2}^{2})

y_{2}-y_{1} = \frac{1}{2}\cdot \frac{v_{y,1}^{2}-v_{y,2}^{2}}{g}

Where:

y_{1}. y_{2} - Initial and final height of the arrow, measured in meters.

v_{y,1}, v_{y,2} - Initial and final vertical speed of the arrow, measured in meters.

g - Gravitational acceleration, measured in meters per square second.

The initial vertical speed of the arrow is:

v_{y,1} = v_{1}\cdot \sin \theta

Where:

v_{1} - Magnitude of the initial velocity, measured in meters per second.

\theta - Initial angle, measured in sexagesimal degrees.

If v_{1} = 82\,\frac{m}{s} and \theta = 24^{\circ}, the initial vertical speed is:

v_{y,1} = \left(82\,\frac{m}{s} \right)\cdot \sin 24^{\circ}

v_{y,1} \approx 33.352\,\frac{m}{s}

If g = 9.807\,\frac{m}{s^{2}}, v_{y,1} \approx 33.352\,\frac{m}{s} and v_{y,2} = 0\,\frac{m}{s}, the maximum height of the first arrow is:

y_{2} - y_{1} = \frac{1}{2}\cdot \frac{\left(33.352\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}}{9.807\,\frac{m}{s^{2}} }

y_{2} - y_{1} = 56.712\,m

Second arrow

U_{g,1} + K_{y,1} =  U_{g,3} + K_{y,3}

Where:

U_{g,1}, U_{g,3} - Initial and final gravitational potential energy, measured in joules.

K_{y,1}, K_{y,3} - Initial and final vertical translational kinetic energy, measured in joules.

m \cdot g \cdot (y_{3} - y_{1}) + \frac{1}{2}\cdot m \cdot (v_{y, 3}^{2} -v_{y, 1}^{2}) = 0

g \cdot (y_{3}-y_{1}) = \frac{1}{2}\cdot (v_{y,1}^{2}-v_{y,3}^{2})

y_{3}-y_{1} = \frac{1}{2}\cdot \frac{v_{y,1}^{2}-v_{y,3}^{2}}{g}

If g = 9.807\,\frac{m}{s^{2}}, v_{y,1} = 82\,\frac{m}{s} and v_{y,3} = 0\,\frac{m}{s}, the maximum height of the first arrow is:

y_{3} - y_{1} = \frac{1}{2}\cdot \frac{\left(82\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}}{9.807\,\frac{m}{s^{2}} }

y_{3} - y_{1} = 342.816\,m

The first arrow reaches a maximum height of 56.712 meters, whereas second arrow reaches a maximum height of 342.816 meters.

b) The total energy of each system is determined hereafter:

First arrow

The total mechanical energy at maximum height is equal to the sum of the potential gravitational energy and horizontal translational kinetic energy. That is to say:

E = U + K_{x}

The expression is now expanded:

E = m\cdot g \cdot y_{max} + \frac{1}{2}\cdot m \cdot v_{x}^{2}

Where v_{x} is the horizontal speed of the arrow, measured in meters per second.

v_{x} = v_{1}\cdot \cos \theta

If v_{1} = 82\,\frac{m}{s} and \theta = 24^{\circ}, the horizontal speed is:

v_{x} = \left(82\,\frac{m}{s} \right)\cdot \cos 24^{\circ}

v_{x} \approx 74.911\,\frac{m}{s}

If m = 0.06\,kg, g = 9.807\,\frac{m}{s^{2}}, y_{max} = 56.712\,m and v_{x} \approx 74.911\,\frac{m}{s}, the total mechanical energy is:

E = (0.06\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (56.712\,m)+\frac{1}{2}\cdot (0.06\,kg)\cdot \left(74.911\,\frac{m}{s} \right)^{2}

E = 201.720\,J

Second arrow:

The total mechanical energy is equal to the potential gravitational energy. That is:

E = m\cdot g \cdot y_{max}

m = 0.06\,kg, g = 9.807\,\frac{m}{s^{2}} and y_{max} = 342.816\,m

E = (0.06\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (342.816\,m)

E = 201.720\,J

Both arrows have a total mechanical energy at their maximum height of 201.720 joules.

You might be interested in
If 2 grams of element X combine with 4 grams of element Y to form compound XY, how many grams of element Y would combine with 11
kykrilka [37]
This is sort of simple.  2 grams of X can combine with 4 grams of Y to form XY.  Y is 2 times the amount of grams in X.  So if there are 11 grams of X there are 22 grams of Y to form XY.  Or you could take 11 divided by 2 is 5.5 and then multiply 4 by 5.5 to get 22.  If this is wrong please tell me I would be very happy to know.
3 0
3 years ago
To impress his friends while riding on a carnival
s344n2d4d5 [400]

Answer:

B. decreases while his angular speed remains  unchanged.

Explanation:

His angular speed will always be the same as the wheel's angular speed, which remains constant as it's in uniform motion. As for linear speed, which is defined as the product of angular speed and distance r to the center of rotation, and his distance to center is decreasing, his linear speed must be decreasing as well.

8 0
3 years ago
If you wanted to soundproof a room what insulator would you use
olasank [31]

Answer:

foam but thats what i heard from other people

Explanation:

4 0
3 years ago
Read 2 more answers
Which material will displace a volume of water? Which material will displace a volume of water less than its own volume? Which m
horrorfan [7]

Answer:

1. all of them

2. cork and wax

3. iron, lead, and aluminum

4. none of them

Explanation:

1.Which material will displace a volume of water?  all of them

When an object is introduced into a container with a volume of water, a volume of liquid equal to the volume of the object is displaced

2.Which material will displace a volume of water less than its own volume?

cork and wax

because  the density of the object is less than that of the displaced liquid

3.Which material will displace a volume of water equal to its own volume?

iron, lead, and aluminum

because  Arquimedes's principle: any body plunged inside a fluid in this case water experiences an ascending force called push, equivalent to the weight of the fluid removed by the body

4.Which material will displace a volume of water greater than its own volume?

None of them

7 0
3 years ago
A long, rigid conductor, lying along the x-axis, carries a current of 7.0 A in the negative direction. A magnetic field B is pre
Alisiya [41]

Answer:

0.546 \hat k

Explanation:

From the given information:

The force on a given current-carrying conductor is:

F = I ( \L  \limits ^ {\to } \times B ^{\to})\\ \\ dF = I(dL\limits ^ {\to } \times B ^{\to})

where the length usually in negative (x) direction can be computed as

\L ^ {\to }  = -x\hat i \\dL\limits ^ {\to }- dx\hat i

Now, taking the integral of the force between x = 1.0 m and x = 3.0 m to get the value of the force, we have:

\int dF = \int ^3_1 I ( dL^{\to} \times B ^{\to})

F = I \int^3_1 ( -dx \hat i ) \times ( 4.0 \hat i + 9.0 \ x^2 \hat j)

F = I \int^3_1  - 9.0x^2 \ dx \hat k

F = I  (9.0) \bigg [\dfrac{x^3}{3} \bigg ] ^3_1 \hat k

F = I  (9.0) \bigg [\dfrac{3^3}{3} - \dfrac{1^3}{3} \bigg ]  \hat k

where;

current I = 7.0 A

F = (7.0 \ A)  (9.0) \bigg [\dfrac{27}{3} - \dfrac{1}{3} \bigg ]  \hat k

F = (7.0 \ A)  (9.0) \bigg [\dfrac{26}{3} \bigg ]  \hat k

F = 546 × 10⁻³ T/mT \hat k

F = 0.546 \hat k

4 0
3 years ago
Other questions:
  • A cyclist and his bicycle have a combined mass of 88 kg and a combined
    6·1 answer
  • Which data set has the largest range? A. 55, 57, 59, 60, 61, 49, 48 B. 21, 25, 14, 16, 29, 22, 20 C. 12, 15, 16, 19, 18, 15, 27
    7·1 answer
  • Fossil fuel are organic compounds that are made from
    15·2 answers
  • Salt is dissolved in a flask of tap water. Distilling the mixture causes the salt to separate from the water. Which type of ener
    5·2 answers
  • ________ is defined as physical, social, and economic access to sufficient, safe, and nutritious food to meet dietary needs and
    9·1 answer
  • According to the theory of plate tectonics, what drives the motion of the continents?
    5·2 answers
  • Which of the following types of technologies has best helped scientists to study very high-energy objects in outer space, such a
    15·2 answers
  • Janet jumps horizontally off a high diving platform with a velocity of 2.63 m/s and lands in the water 1.9 s later. How high is
    8·1 answer
  • How does a physicist answer a scientific question?
    6·1 answer
  • A train is traveling at 30.0 m/sm/s relative to the ground in still air. The frequency of the note emitted by the train whistle
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!