1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alborosie
4 years ago
12

Two 60.o-g arrows are fired in quick succession with an initial speed of 82.0 m/s. The first arrow makes an initial angle of 24.

0° above the horizontal, and the second arrow is fired straight upward. Assume an isolated system and choose the reference configuration at the initial position of the arrows.
(a) what is the maximum height of each of the arrows?
(b) What is the total mechanical energy of the arrow-Earth system for each of the arrows at their maximum height?
Physics
1 answer:
olganol [36]4 years ago
7 0

Answer:

a) The first arrow reaches a maximum height of 56.712 meters, whereas second arrow reaches a maximum height of 342.816 meters, b) Both arrows have a total mechanical energy at their maximum height of 201.720 joules.

Explanation:

a) The first arrow is launch in a parabolic way, that is, horizontal speed remains constant and vertical speed changes due to the effects of gravity. On the other hand, the second is launched vertically, which means that velocity is totally influenced by gravity. Let choose the ground as the reference height for each arrow. Each arrow can be modelled as particles and by means of the Principle of Energy Conservation:

First arrow

U_{g,1} + K_{x,1} + K_{y,1} =  U_{g,2} + K_{x,2} + K_{y,2}

Where:

U_{g,1}, U_{g,2} - Initial and final gravitational potential energy, measured in joules.

K_{x,1}, K_{x,2} - Initial and final horizontal translational kinetic energy, measured in joules.

K_{y,1}, K_{y,2} - Initial and final vertical translational kinetic energy, measured in joules.

Now, the system is expanded and simplified:

m \cdot g \cdot (y_{2} - y_{1}) + \frac{1}{2}\cdot m \cdot (v_{y, 2}^{2} -v_{y, 1}^{2}) = 0

g \cdot (y_{2}-y_{1}) = \frac{1}{2}\cdot (v_{y,1}^{2}-v_{y,2}^{2})

y_{2}-y_{1} = \frac{1}{2}\cdot \frac{v_{y,1}^{2}-v_{y,2}^{2}}{g}

Where:

y_{1}. y_{2} - Initial and final height of the arrow, measured in meters.

v_{y,1}, v_{y,2} - Initial and final vertical speed of the arrow, measured in meters.

g - Gravitational acceleration, measured in meters per square second.

The initial vertical speed of the arrow is:

v_{y,1} = v_{1}\cdot \sin \theta

Where:

v_{1} - Magnitude of the initial velocity, measured in meters per second.

\theta - Initial angle, measured in sexagesimal degrees.

If v_{1} = 82\,\frac{m}{s} and \theta = 24^{\circ}, the initial vertical speed is:

v_{y,1} = \left(82\,\frac{m}{s} \right)\cdot \sin 24^{\circ}

v_{y,1} \approx 33.352\,\frac{m}{s}

If g = 9.807\,\frac{m}{s^{2}}, v_{y,1} \approx 33.352\,\frac{m}{s} and v_{y,2} = 0\,\frac{m}{s}, the maximum height of the first arrow is:

y_{2} - y_{1} = \frac{1}{2}\cdot \frac{\left(33.352\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}}{9.807\,\frac{m}{s^{2}} }

y_{2} - y_{1} = 56.712\,m

Second arrow

U_{g,1} + K_{y,1} =  U_{g,3} + K_{y,3}

Where:

U_{g,1}, U_{g,3} - Initial and final gravitational potential energy, measured in joules.

K_{y,1}, K_{y,3} - Initial and final vertical translational kinetic energy, measured in joules.

m \cdot g \cdot (y_{3} - y_{1}) + \frac{1}{2}\cdot m \cdot (v_{y, 3}^{2} -v_{y, 1}^{2}) = 0

g \cdot (y_{3}-y_{1}) = \frac{1}{2}\cdot (v_{y,1}^{2}-v_{y,3}^{2})

y_{3}-y_{1} = \frac{1}{2}\cdot \frac{v_{y,1}^{2}-v_{y,3}^{2}}{g}

If g = 9.807\,\frac{m}{s^{2}}, v_{y,1} = 82\,\frac{m}{s} and v_{y,3} = 0\,\frac{m}{s}, the maximum height of the first arrow is:

y_{3} - y_{1} = \frac{1}{2}\cdot \frac{\left(82\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}}{9.807\,\frac{m}{s^{2}} }

y_{3} - y_{1} = 342.816\,m

The first arrow reaches a maximum height of 56.712 meters, whereas second arrow reaches a maximum height of 342.816 meters.

b) The total energy of each system is determined hereafter:

First arrow

The total mechanical energy at maximum height is equal to the sum of the potential gravitational energy and horizontal translational kinetic energy. That is to say:

E = U + K_{x}

The expression is now expanded:

E = m\cdot g \cdot y_{max} + \frac{1}{2}\cdot m \cdot v_{x}^{2}

Where v_{x} is the horizontal speed of the arrow, measured in meters per second.

v_{x} = v_{1}\cdot \cos \theta

If v_{1} = 82\,\frac{m}{s} and \theta = 24^{\circ}, the horizontal speed is:

v_{x} = \left(82\,\frac{m}{s} \right)\cdot \cos 24^{\circ}

v_{x} \approx 74.911\,\frac{m}{s}

If m = 0.06\,kg, g = 9.807\,\frac{m}{s^{2}}, y_{max} = 56.712\,m and v_{x} \approx 74.911\,\frac{m}{s}, the total mechanical energy is:

E = (0.06\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (56.712\,m)+\frac{1}{2}\cdot (0.06\,kg)\cdot \left(74.911\,\frac{m}{s} \right)^{2}

E = 201.720\,J

Second arrow:

The total mechanical energy is equal to the potential gravitational energy. That is:

E = m\cdot g \cdot y_{max}

m = 0.06\,kg, g = 9.807\,\frac{m}{s^{2}} and y_{max} = 342.816\,m

E = (0.06\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (342.816\,m)

E = 201.720\,J

Both arrows have a total mechanical energy at their maximum height of 201.720 joules.

You might be interested in
Why are units of measurement useful?
Zanzabum

Without the ability to measure, it would be difficult for scientists to conduct experiments or form theories. Not only is measurement important in science and the chemical industry, it is also essential in farming, engineering, construction, manufacturing, commerce, and numerous other occupations and activities.

5 0
4 years ago
Read 2 more answers
If earth increase the distance from the sun, what will happen to the period of orbi t(the time it takes to complete one revoluti
Mandarinka [93]

The period of the orbit would increase as well

Explanation:

We can answer this question by applying Kepler's third law, which states that:

"The square of the orbital period of a planet around the Sun is proportional to the cube of the semi-major axis of its orbit"

Mathematically,

\frac{T^2}{a^3}=const.

Where

T is the orbital period

a is the semi-major axis of the orbit

In this problem, the question asks what happens if the distance of the Earth from the Sun increases. Increasing this distance means increasing the semi-major axis of the orbit, a: but as we saw from the previous equation, the orbital period of the Earth is proportional to a, therefore as a increases, T increases as well.

Therefore, the period of the orbit would increase.

Learn more about Kepler's third law:

brainly.com/question/11168300

#LearnwithBrainly

5 0
4 years ago
A train travels 200km/hr. how much distance will the train be from the station in 2.5 hours?
SCORPION-xisa [38]

Answer:

500km

Explanation:

Given parameters:

Speed  = 200km/hr

Time taken  = 2.5hrs

Unknown:

Distance  = ?

Solution:

To solve this problem, we use the speed, time and distance equation.

   Therefore;

  Distance  = Speed x time

So;

  Distance  = 200 x 2.5  = 500km

6 0
3 years ago
Two objects with the same mass move with the same speed but in opposite directions. Compare their kinetic energies.
ddd [48]

Answer:

A.  Kinetic energies are equal.

Explanation:

The kinetic energy of the bodies will be equal since the mass and speed are the same.

Kinetic energy is the energy due to the motion of a body.

Mathematically;

           K.E  = \frac{1}{2} m v²

m is the mass

v is the speed

 The kinetic energy is a scalar quantity with no regard for direction.

5 0
3 years ago
Read 2 more answers
Damage to the ___________ will most likely cause a person to lose the ability to comprehend language. (2 points)
Marina86 [1]

Answer: Wernicke's Area

Explanation: Wernicke's area is the region of the brain responsible for language <em>interpretation</em>. Broca's area is associated with language <em>production.</em>

6 0
3 years ago
Other questions:
  • Researchers condition a flatworm to contract when exposed to light by repeatedly pairing the light with electric shock. the elec
    11·1 answer
  • The energy absorbed or released during a reaction in which a substance is produced is called the
    7·1 answer
  • What does Archimedes' principle say about how the buoyant force relates to the fluid involved?
    11·1 answer
  • Only two electrons, with opposing spins, are allowed in each orbital is known as the
    5·1 answer
  • John pushes his brother Danny on a skateboard. John applies a force of 29 N and Danny's acceleration is 0.4 m/s
    13·2 answers
  • Who discovered the law of conservation of energy?
    11·2 answers
  • Research is being done on the use of radio waves in destroying cancer cells. What type of frequency would be best used in this t
    10·1 answer
  • Your physics TA has a far point of 0.759 m from her eyes and is able to see distant objects in focus when wearing glasses with a
    9·1 answer
  • What happens if two small positively charged particles of equal force are placed close to each other?
    13·2 answers
  • 6. A 2000 kg spacecraft is located 9.2x10 m from the center of the earth. The mass of the earth
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!