1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alborosie
3 years ago
12

Two 60.o-g arrows are fired in quick succession with an initial speed of 82.0 m/s. The first arrow makes an initial angle of 24.

0° above the horizontal, and the second arrow is fired straight upward. Assume an isolated system and choose the reference configuration at the initial position of the arrows.
(a) what is the maximum height of each of the arrows?
(b) What is the total mechanical energy of the arrow-Earth system for each of the arrows at their maximum height?
Physics
1 answer:
olganol [36]3 years ago
7 0

Answer:

a) The first arrow reaches a maximum height of 56.712 meters, whereas second arrow reaches a maximum height of 342.816 meters, b) Both arrows have a total mechanical energy at their maximum height of 201.720 joules.

Explanation:

a) The first arrow is launch in a parabolic way, that is, horizontal speed remains constant and vertical speed changes due to the effects of gravity. On the other hand, the second is launched vertically, which means that velocity is totally influenced by gravity. Let choose the ground as the reference height for each arrow. Each arrow can be modelled as particles and by means of the Principle of Energy Conservation:

First arrow

U_{g,1} + K_{x,1} + K_{y,1} =  U_{g,2} + K_{x,2} + K_{y,2}

Where:

U_{g,1}, U_{g,2} - Initial and final gravitational potential energy, measured in joules.

K_{x,1}, K_{x,2} - Initial and final horizontal translational kinetic energy, measured in joules.

K_{y,1}, K_{y,2} - Initial and final vertical translational kinetic energy, measured in joules.

Now, the system is expanded and simplified:

m \cdot g \cdot (y_{2} - y_{1}) + \frac{1}{2}\cdot m \cdot (v_{y, 2}^{2} -v_{y, 1}^{2}) = 0

g \cdot (y_{2}-y_{1}) = \frac{1}{2}\cdot (v_{y,1}^{2}-v_{y,2}^{2})

y_{2}-y_{1} = \frac{1}{2}\cdot \frac{v_{y,1}^{2}-v_{y,2}^{2}}{g}

Where:

y_{1}. y_{2} - Initial and final height of the arrow, measured in meters.

v_{y,1}, v_{y,2} - Initial and final vertical speed of the arrow, measured in meters.

g - Gravitational acceleration, measured in meters per square second.

The initial vertical speed of the arrow is:

v_{y,1} = v_{1}\cdot \sin \theta

Where:

v_{1} - Magnitude of the initial velocity, measured in meters per second.

\theta - Initial angle, measured in sexagesimal degrees.

If v_{1} = 82\,\frac{m}{s} and \theta = 24^{\circ}, the initial vertical speed is:

v_{y,1} = \left(82\,\frac{m}{s} \right)\cdot \sin 24^{\circ}

v_{y,1} \approx 33.352\,\frac{m}{s}

If g = 9.807\,\frac{m}{s^{2}}, v_{y,1} \approx 33.352\,\frac{m}{s} and v_{y,2} = 0\,\frac{m}{s}, the maximum height of the first arrow is:

y_{2} - y_{1} = \frac{1}{2}\cdot \frac{\left(33.352\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}}{9.807\,\frac{m}{s^{2}} }

y_{2} - y_{1} = 56.712\,m

Second arrow

U_{g,1} + K_{y,1} =  U_{g,3} + K_{y,3}

Where:

U_{g,1}, U_{g,3} - Initial and final gravitational potential energy, measured in joules.

K_{y,1}, K_{y,3} - Initial and final vertical translational kinetic energy, measured in joules.

m \cdot g \cdot (y_{3} - y_{1}) + \frac{1}{2}\cdot m \cdot (v_{y, 3}^{2} -v_{y, 1}^{2}) = 0

g \cdot (y_{3}-y_{1}) = \frac{1}{2}\cdot (v_{y,1}^{2}-v_{y,3}^{2})

y_{3}-y_{1} = \frac{1}{2}\cdot \frac{v_{y,1}^{2}-v_{y,3}^{2}}{g}

If g = 9.807\,\frac{m}{s^{2}}, v_{y,1} = 82\,\frac{m}{s} and v_{y,3} = 0\,\frac{m}{s}, the maximum height of the first arrow is:

y_{3} - y_{1} = \frac{1}{2}\cdot \frac{\left(82\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}}{9.807\,\frac{m}{s^{2}} }

y_{3} - y_{1} = 342.816\,m

The first arrow reaches a maximum height of 56.712 meters, whereas second arrow reaches a maximum height of 342.816 meters.

b) The total energy of each system is determined hereafter:

First arrow

The total mechanical energy at maximum height is equal to the sum of the potential gravitational energy and horizontal translational kinetic energy. That is to say:

E = U + K_{x}

The expression is now expanded:

E = m\cdot g \cdot y_{max} + \frac{1}{2}\cdot m \cdot v_{x}^{2}

Where v_{x} is the horizontal speed of the arrow, measured in meters per second.

v_{x} = v_{1}\cdot \cos \theta

If v_{1} = 82\,\frac{m}{s} and \theta = 24^{\circ}, the horizontal speed is:

v_{x} = \left(82\,\frac{m}{s} \right)\cdot \cos 24^{\circ}

v_{x} \approx 74.911\,\frac{m}{s}

If m = 0.06\,kg, g = 9.807\,\frac{m}{s^{2}}, y_{max} = 56.712\,m and v_{x} \approx 74.911\,\frac{m}{s}, the total mechanical energy is:

E = (0.06\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (56.712\,m)+\frac{1}{2}\cdot (0.06\,kg)\cdot \left(74.911\,\frac{m}{s} \right)^{2}

E = 201.720\,J

Second arrow:

The total mechanical energy is equal to the potential gravitational energy. That is:

E = m\cdot g \cdot y_{max}

m = 0.06\,kg, g = 9.807\,\frac{m}{s^{2}} and y_{max} = 342.816\,m

E = (0.06\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (342.816\,m)

E = 201.720\,J

Both arrows have a total mechanical energy at their maximum height of 201.720 joules.

You might be interested in
The layer of leaves that blocks most of the sunlight from reaching the ground in the rain forest is called the _____.
love history [14]
The answer should be <span>canopy.</span>
4 0
3 years ago
Read 2 more answers
A woman launches a boat from one shore of a straight river and wants to land at the point directly on the opposite shore. If the
I am Lyosha [343]

Answer:

If she stands on the North side of a river flowing to the East at 5 mph,

she must head towards the SouthWest to arrive on the South side of the river directly across from her starting point and we have

x^2 + 5^2 = 10^2 where x is her speed directly across the river

x = (75)^1/2 = 8.66 mph towards the South

sin theta = 5 / 10 = 1/2

She must angle the boat at 30 deg from straight South

4 0
2 years ago
I need help if someone has coursehero plss some me the answer and I will give you brainliest plssss
Vinil7 [7]

Answer:

5. All of the answers are yes.

Explanation:

<h2><u><em>PLEASE MARK AS BRAINLIEST!!!!!</em></u></h2>
7 0
2 years ago
A(n) 96.1 g ball is dropped from a height of 59.1 cm above a spring of negligible mass.The ball compresses the spring to a maxim
Serhud [2]

Answer:

Explanation:

Mass of ball Is m=96.1g=0.0961kg

Height above spring is 59.1cm

L=0.591m

Extension of the spring is 4.75403cm

e=0.0475403m

Then the distance the ball traveled is H=L+e

H=0.591+0.0475403

H=0.6385403m

Then, the potential energy of the ball is given as

P.E=mgh

P.E=0.0961×9.81×0.6385403

P.E=0.602J

From conservation of energy, energy cannot be created nor destroy but can be transferred from one form to another

Then, the P.E is transferred to the work done by the spring

Then, Work done by spring is given as

W=½ke²

W=P.E=½×k×0.0475403²

0.602=½×k×0.0475403²

k=0.602×2/0.0475403²

k=532.72N/m

The spring constant is 532.72 N/m

4 0
3 years ago
1. What force is needed to accelerate the stone of
Leokris [45]

Answer:

i think its a

Explanation:

and next is 4

6 0
2 years ago
Other questions:
  • Comparing helium atoms with nitrogen molecules at the same temperature, the helium atoms on average are moving _______ and have
    7·1 answer
  • Which of the following describes the efficiency of real machines?
    13·2 answers
  • If the mass of the products measured 120 g, what would be the mass of the reactants?
    8·2 answers
  • a fluid in equilibrium within a vessel exerts pressure intensity to all parts of the fluid, according to _____ principle
    6·1 answer
  • Find the potential energy of a 50gof mass 10kg standing on a building floor of 10m above the ground level​
    13·1 answer
  • Qué fuerza neta actúa sobre una caja que se desliza cuando ejerces sobre ella una fuerza de 110 N y la fricción entre la caja y
    14·1 answer
  • In a closed system, what happens to the total energy of the system as energy conversion takes place?
    9·1 answer
  • Consider 2 steel rods, A and B, B has three times the area and twice the length of A, so young modulus of B will be what factor
    6·1 answer
  • Urgent help needed with Physics
    5·1 answer
  • Change in inherited characteristics over time is called what?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!