D - for example, Potassium has 1 electron on its outer shell, whilst Chlorine has 7 electrons on its outer shell. Potassium loses one electron to Chlorine so that each of them have a full outer shell. This would form Potassium Chloride.
Answer:
ΔS = +541.3Jmol⁻¹K⁻¹
Explanation:
Given parameters:
Standard Entropy of Fe₂O₃ = 90Jmol⁻¹K⁻¹
Standard Entropy of C = 5.7Jmol⁻¹K⁻¹
Standard Entropy of Fe = 27.2Jmol⁻¹K⁻¹
Standard Entropy of CO = 198Jmol⁻¹K⁻¹
To find the entropy change of the reaction, we first write a balanced reaction equation:
Fe₂O₃ + 3C → 2Fe + 3CO
To calculate the entropy change of the reaction we simply use the equation below:
ΔS = ∑S
- ∑S
Therefore:
ΔS = [(2x27.2) + (3x198)] - [(90) + (3x5.7)] = 648.4 - 107.1
ΔS = +541.3Jmol⁻¹K⁻¹
Answer:

In which [Ag+] in negligibly small and the concentration of each reactant is 1.0 M
The answer is A) PO43- < NO3- < Na+
Explanation:
Ag+ is removed from the solution just like PO43-, so there are just 2 possible answers at this point: a or b. Then we can notice that Na3PO4 releases 3 moles of Na+ and just 1 mole of NO3-
We have 100mL of each reactant with the same concentration for both (1.0 M) so:
(0.1)(1)(3)= 0.3 mol Na+
(0.1)(1)= 0.1 mol NO3-
so PO43- < NO3- < Na+
Answer:
The baseball is thrown twice as fast as the softball in the same direction.
Explanation: