Answer:
See explanation below
Explanation:
You are not providing the starting material, however, I manage to find a similar question to this, so I'm gonna use it as a basis to help you answer yours.
Now let's analyze what is happening in the reaction so we can predict the final product.
We have a ketone here, reacting at first with LDA. This is a very strong base that is commonly used in reactions with ketones and aldehydes to promove a condensation. To do this, as LDA is a strong base it will occur firts an acid base reaction, substracting the most acidic hydrogen in the molecule (Which in this case, is the Beta hydrogen of the carbonile). This will cause an enolate formation.
Then, this enolate will react with the CH3I and form a new product. The final result would be a ketone with a methyl group now attached. In the picture 2, you have the mechanism and final product.
Hope this helps
Answer:
mass and speed
Explanation:
the motion of an object depends on how fast it's travelling and also how much mass it has
Answer:
b) The dehydrated sample absorbed moisture after heating
Explanation:
a) Strong initial heating caused some of the hydrate sample to splatter out.
This will result in a higher percent of water than the real one, because you assume in the calculation that the splattered sample was only water (which in not true).
b) The dehydrated sample absorbed moisture after heating.
Usually inorganic salts may absorbed moisture from the atmosphere so this will explain the 13% difference between calculated water percent the real content of water in the hydrate.
c) The amount of the hydrate sample used was too small.
It will create some errors but they do not create a difference of 13% difference as stated in the problem.
d) The crucible was not heated to constant mass before use.
Here the error is small.
e) Excess heating caused the dehydrated sample to decompose.
Usually the inorganic compounds are stable in the temperature range of this kind of experiments. If you have an organic compound which retain water molecules you may decompose the sample forming volatile compounds which will leave crucible so the error will be quite high.
I hope this helps you alot and to my understanding:)
Answer is: four iron atoms <span>are reacting with every three molecules of oxygen.
Balanced chemical reaction: 4Fe + 3O</span>₂ → 2Fe₂O₃.
From chemical reaction: n(Fe) : n(O₂) = 4 : 3.
Ratios of atoms of iron and molecules of oxygen is 4 : 3..
There is four atoms of iron and six atoms of oxygen on both side of reaction.