Answer:
Weight on Jupiter will be equal to 2940 N
Explanation:
We have given given acceleration due to gravity on Jupiter is 3 times of acceleration due to gravity on earth
Acceleration due to gravity on earth 
So acceleration due to gravity on Jupiter = 
Mass is given m = 100 kg
We have to find the weight
Weight is equal to W = mg, here m is mass and a is acceleration
So weight 
you can subtract the atomic number from the mass number to find the number of neutrons.
Density is the ratio of a substance's mass to its volume. On the other hand, according to Archimedes' principle, the volume of water displaced is equal to the volume of the object placed on the water. Thus, the density of the metal is equal to 8.39 mL. So, the density would be
Density = 32.5 g/8.39 mL = 3.87 g/mL
All of Dina's potential energy Ep is converted into kinetic energy Ek so Ep=Ek, where Ep=m*g*h and Ek=(1/2)*m*v². m is the mass of Dina, h is the height of ski slope, g=9.8 m/s² and v is the maximal velocity.
So we solve for v:
m*g*h=(1/2)*m*v², masses cancel out,
g*h=(1/2)*v², we multiply by 2,
2*g*h=v² and take the square root to get v
√(2*g*h)=v, we plug in the numbers and get:
v=9.9 m/s.
So Dina's maximum velocity on the bottom of the ski slope is v=9.9 m/s.
I don't think that 4m has anything to do with the problem.
anyway. here.
A___________________B_______C
where A is the point that the train was released.
B is where the wheel started to stick
C is where it stopped
From A to B, v=2.5m/s, it takes 2s to go A to B so t=2
AB= v*t = 2.5 * 2 = 5m
The train comes to a stop 7.7 m from the point at which it was released so AC=7.7m
then BC= AC-AB = 7.7-5 = 2.7m
now consider BC
v^2=u^2+2as
where u is initial speed, in this case is 2.5m/s
v is final speed, train stop at C so final speed=0, so v=0
a is acceleration
s is displacement, which is BC=2.7m
substitute all the number into equation, we have
0^2 = 2.5^2 + 2*a*2.7
0 = 6.25 + 5.4a
a = -6.25/5.4 = -1.157
so acceleration is -1.157m/(s^2)