1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jolli1 [7]
3 years ago
13

A child of mass 46.2 kg sits on the edge of a merry-go-round with radius 1.9 m and moment of inertia 130.09 kg m2 . The merrygo-

round rotates with an angular velocity of 2.4 rad/s. The child then walks towards the center of the merry-go-round and stops at a distance 0.779 m from the center. Now what is the angular velocity of the merry-go-round
Physics
1 answer:
Vedmedyk [2.9K]3 years ago
8 0

Answer:

The angular velocity is w_f = 4.503 \  rad/s

Explanation:

From the question we are told that

   The mass of the child is  m_c  =  46.2 \ kg

    The radius of the merry go round is  r =  1.9 \ m

     The moment of inertia of the merry go round is I_m =  130.09 \  kg \cdot  m^2

      The angular velocity of the merry-go round is  w =  2.4 \ rad/s

       The position of the child from the center of the merry-go-round is  x = 0.779 \ m

According to the law of angular momentum conservation

    The initial angular momentum  =  final  angular momentum

So  

       L_i  =  L_f

=>     I_i w_i  =  I_fw_f

Now   I_i is the initial moment of inertia of the system which is mathematically represented as

          I_i  = I_m + I_{b_1}

Where  I_{b_i} is the initial moment of inertia of the boy which is mathematically evaluated as

      I_{b_i} =  m_c * r

substituting values

      I_{b_i} =  46.2 *  1.9^2

      I_{b_i} =  166.8 \ kg \cdot m^2

Thus

   I_i  =130.09 + 166.8        

   I_i  = 296.9 \ kg \cdot m^2      

Thus  

     I_i * w_i  =L_i=  296.9 * 2.4

       L_i  = 712.5 \ kg \cdot m^2/s

Now  

     I_f =  I_m  + I_{b_f }

Where  I_{b_f} is the final  moment of inertia of the boy which is mathematically evaluated as

         I_{b_f} =  m_c * x

substituting values

         I_{b_f} =  46.2 * 0.779^2

         I_{b_f} =  28.03  kg \cdot m^2

Thus

      I_f =  130.09 + 28.03

      I_f =  158.12 \ kg \ m^2

Thus

     L_f  =  158.12 * w_f

Hence

      712.5  =  158.12 * w_f

       w_f = 4.503 \  rad/s

You might be interested in
The properties of elements in compounds are usually _______ the properties of the elements alone.
KATRIN_1 [288]

are usually different from the property. only mixture takes the similar property of its constituent element

7 0
3 years ago
A tetrahedron has an equilateral triangle base with 25.0-cm-long edges and three equilateral triangle sides. The base is paralle
djverab [1.8K]

Answer:

a. 7.046 Nm²/C

b. 2.348 Nm²/C

Explanation:

Data given:

Base of equilateral triangle = 25.0 cm = 0.25 m

Strength of electric field = 260 N/C

In order to find the electric flux we first have to find out the area of triangle.

Area of triangle = \frac{\sqrt{3} }{4} a^{2}

                         = \frac{\sqrt{3} }{4} (0.25)^{2}

                         = 0.0271 m³

Lets find electric flux,

      Electric Flux = E. A

                          = 260×0.0271

                          = 7.046 Nm²/C

Now we can find the electric flux through each of the three sides.

Electric flux through three sides = \frac{7.046}{3}

                                                = 2.348 N m²/C

       

3 0
3 years ago
The gravitational acceleration is 9.81 m/s2 here on Earth at sea level. What is the gravitational acceleration at a height of 35
azamat

To solve this problem it is necessary to apply the definition of severity of Newtonian laws in which it is specified that gravity is defined by

g= \frac{GM}{R^2}

Where

G= Gravitational Constant

M = Mass of Earth

R= Radius from center of the planet

According to the information we need to find the gravity 350km more than the radius of Earth, then

g_{ss} = \frac{GM}{R+h^2}

g_{ss} = \frac{6.67*10^{-11}*5.972*10^{24}}{(6371*10^3+350*10^3)^2}

g_{ss} = 8.82m/s^2

Therefore the gravitational acceleration at 350km is 8.82m/s^2

5 0
4 years ago
Describe how the velocity and acceleration of a skydiver changes as she falls from the plane back to the ground
Andrews [41]
The velocity and acceleration of the skydiver will increase as she falls to the ground. According to Newton’s Law of gravity.
8 0
3 years ago
Read 2 more answers
Bodies weighing 1 kilogram and 5 kilograms lie on a smooth horizontal surface. If a traction force of 0.6 N acts on another 5 kg
natima [27]

0.6/5,1,5

so calculate it

not so sure though

6 0
3 years ago
Other questions:
  • Malika is writing an essay about the Sun. Below is the first paragraph in the essay. The Sun is an average-size star that is loc
    9·2 answers
  • PLS PLS PLS PLS PLS HELP
    6·1 answer
  • Technician A says that the tinnerman nuts are used to hold the brake drum on and should be reinstalled when the drum is replaced
    7·1 answer
  • uring the investigation of a traffic accident, police find skid marks 89.9 m long. They determine the coefficient of friction be
    5·1 answer
  • Doing a physics Lab and need to propagate uncertainty for experimental results. I need the uncertainty in order to add it to my
    9·1 answer
  • A 0.450-kg soccer ball has a kinetic energy of 119 J. What is the velocity of the<br> soccer ball?
    10·1 answer
  • Constants Canada geese migrate essentially along a north-south direction for well over a thousand kilometers in some cases, trav
    10·1 answer
  • What is the formula of Kinetic Energy​
    6·2 answers
  • A mouse ran 25.45 meters in 11 seconds, stopped for 5 seconds to eat a piece of cheese, ran 2.5 meters in 1.2 seconds to hide be
    15·1 answer
  • Is water wet?<br> I need an argument.
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!