Answer:
False
Explanation:
Scientific models are not always built to scale and may not be fully accurate
Answer:
a) The distance of spectator A to the player is 79.2 m
b) The distance of spectator B to the player is 43.9 m
c) The distance between the two spectators is 90.6 m
Explanation:
a) Knowing the time it takes the sound to reach both spectators, we can calculate their position relative to the player, using this equation:
x = v * t
where:
x = position of the spectators
v = speed of sound
t = time
Then, the position for spectator A relative to the player is:
x = 343 m/s * 0.231 s = 79.2 m
b)For spectator B:
x = 343 m/s * 0.128 s
x = 43.9 m
The distance of spectator A and B to the player is 79.2 m and 43.9 m respectively.
c) To calculate the distance between the spectators, please see the attached figure. Notice that the distance between the spectators is the hypotenuse of the triangle formed by the sightline of both. We already know the longitude of the two sides. Then, using Pythagoras theorem:
(Distance AB)² = A² + B²
(Distance AB)² = (79.2 m)² + (43.9 m)²
Distance AB = 90. 6 m
Explanation:
Given that,
The slope of the ramp, 
Mass of the box, m = 60 kg
(a) Distance covered by the truck up the slope, d = 300 m
Initially the truck moves with a constant velocity. We know that the net work done on the box is equal to 0 as per work energy theorem as :

u and v are the initial and the final velocity of the truck
(b) The work done on the box by the force of gravity is given by :

Here, 


W = -24550.13 J
(c) What is the work done on the box by the normal force is equal to 0 as the angle between the force and the displacement is 90 degrees.
(d) The work done by friction is given by :


Hence, this is the required solution.
Answer:
Available energy = 35 x 10⁶ J
Explanation:
Given:
Amount of energy (Q) = 21 gj = 21 x 10⁹ J
Temperature T1 = 600 k
Temperature T0 = 27 + 273 = 300k
Find:
Available energy
Computation:
Available energy = Q[1/T0 - 1/T1]
Available energy = 21 x 10⁹ J[1/300 - 1/600]
Available energy = 35 x 10⁶ J