Answer:
(a) 1.3 x 10^6 Hz
(b) 76.73 cm
Explanation:
(a)
the formula for the frequency is given by
f = B q / 2 π m
where, B be the strength of magnetic field, q be the charge on one electron, m is the mass of one electron.
B = 46.7 micro tesla = 46.7 x 10^-6 T
q = 1.6 x 10^-19 C
m = 9.1 x 10^-31 kg
f = (46.7 x 10^-6 x 1.6 x 10^-19) / (2 x 3.14 x 9.1 x 10^-31) = 1.3 x 10^6 Hz
(b) K = 114 eV = 114 x 1.6 x 10^-19 J = 182.4 x 10^-19 J
K = 1/2 mv^2
182.4 x 10^-19 = 0.5 x 9.1 x 10^-31 x v^2
v = 6.3 x 10^6 m/s
r = m v / B q
Where, r be the radius of circular path
r = (9.1 x 10^-31 x 6.3 x 10^6) / (46.7 x 10^-6 x 1.6 x 10^-19)
r = 0.7673 m = 76.73 cm
Answer:
E = 3.54 x 10⁻¹⁹ J
Explanation:
The energy of the photon can be given in terms of its wavelength by the use of the following formula:

where,
E = energy = ?
h = Plank's Constant = 6.626 x 10⁻³⁴ Js
c = speed of light = 2.998 x 10⁸ m/s
λ = wavelength of light = 560.6 nm = 5.606 x 10⁻⁷ m
Therefore,

<u>E = 3.54 x 10⁻¹⁹ J</u>
Yes because if 0*c equals 32*F than the higher the number the hotter it is
Answer:
40 m/s
Explanation:
given,
height of the fall, h = 82 m
time taken to fall, t = 1.3 s
rock velocity, v = ?
acceleration due to gravity, g = 9.8 m/s²
rock is released initial velocity, u = 0 m/s
using equation of motion
v² = u² + 2 a s
v² = 0 + 2 x 9.8 x 82
v² = 1607.2
v = 40 m/s
hence, rock's velocity is equal to 40 m/s