The answer for this question would be B) False or the second option because top-down processing is NOT often used when one encounters an unfamiliar stimulus.
Answer:
a) There are 100 centimeters in 1 meter.
b) 
Explanation:
a) We have the conversion
1 m = 100 cm
So there are 100 centimeters in 1 meter.
b) 1 inch = 2.54 cm


Answer:
0.03167 m
1.52 m
Explanation:
x = Compression of net
h = Height of jump
g = Acceleration due to gravity = 9.81 m/s²
The potential energy and the kinetic energy of the system is conserved

The spring constant of the net is 20130.76 N
From Hooke's Law

The net would strech 0.03167 m
If h = 35 m
From energy conservation

Solving the above equation we get

The compression of the net is 1.52 m
a) Work done = Net Kinetic Energy
= 1/2 x 50 kg x ((12m/s)^2 - (3m/s)^2)
= 0.5 x 50 Kg x (144 -9)(m/s)^2
= 3375 Kg (m/s)^2
b) Force = mxa
a = 120 N/50 Kg = 2.4 m/s^2
Using newtons third law of motion, we get-
V^2 - U^2 = 2 x a x S
S= (12^2-3^2)m^2/s^2/(2 x 2.4 m/s^2)
= 28.125 m
Answer:
The velocity of Dan is 1.13 m/s.
Explanation:
Given that,
Initial velocity of skateboard and Dan = 2.00 m/s
Velocity of skateboard = 7.00 m/s
Mass of Dan m= 40.0 kg
Mass of skateboard M= 7.00 Kg
Suppose How fast is Dan going as his feet hit the ground?
We need to calculate the initial velocity of Dan
Using conservation of momentum

Put the value into the formula



Hence, The velocity of Dan is 1.13 m/s.