Answer:
1. a simulation 2. saurology
Explanation:
The arrangement of particles that make up an ionic compound would be an ionic lattice type of crystal arrangement. An ionic lattice type of structure will be formed due to many of the ionic bonds formed between the oppositely charged ions of the metal and nonmetal.
The rate constant of first order reaction at 32. 3 °C is 0.343 /s must be less the 0. 543 at 25°C.
First-order reactions are very commonplace. we have already encountered examples of first-order reactions: the hydrolysis of aspirin and the reaction of t-butyl bromide with water to present t-butanol. every other reaction that famous obvious first-order kinetics is the hydrolysis of the anticancer drug cisplatin.
The value of ok suggests the equilibrium ratio of products to reactants. In an equilibrium combination both reactants and merchandise co-exist. big ok > 1 merchandise are k = 1 neither reactants nor products are desired.
Rate constant K₁ = 0. 543 /s
T₁ = 25°C
Activation energy Eₐ = 75. 9 k j/mol.
T₂ = 32. 3 °C.
K₂ =?
formula;
log K₂/K₁= Eₐ /2.303 R [1/T₁ - 1/T₂]
putting the value in the equation
K₂ = 0.343 /s
Hence, The rate constant of first order reaction at 32. 3 °C is 0.343 /s
The specific rate steady is the proportionality consistent touching on the fee of the reaction to the concentrations of reactants. The fee law and the specific charge consistent for any chemical reaction should be determined experimentally. The cost of the charge steady is temperature established.
Learn more about activation energy here:- brainly.com/question/26724488
#SPJ4
Scientific metod this is one of them
M(O₂)=20g
M(O₂)=32.0 g/mol
n(O₂)=20/32.0=0.625 mol
m(C)=12 g
M(C)=12.0 g/mol
n(C)=12/12.0=1.0 mol
2C + O₂ → 2CO
1 mol 0.625 mol 1 mol
0.625-0.5=0.125 mol
2CO + O₂ → 2CO₂
0.250 mol 0.125 mol 0.250 mol
n(CO)=1 mol - 0.250 mol = 0.750 mol
M(CO)=28.0 g/mol
m(CO)=0.750*28.0=21.0 g
n(CO₂)=0.250 mol
M(CO₂)=44.0 g/mol
m(CO₂)=0.250*44.0=11.0 g