The balanced equation for the above reaction is as follows;
2HCl + K₂SO₃ ---> 2KCl + H₂O + SO₂
stoichiometry of HCl to SO₂ is 2:1
number of moles of HCl reacted - 15.0 g / 36.5 g/mol = 0.411 mol
according to molar ratio
number of SO₂ moles formed - 0.411 mol /2 = 0.206 mol
since we know the number of moles we can find volume using ideal gas law equation
PV = nRT
where
P - pressure - 1.35 atm x 101 325 Pa/atm = 136 789 Pa
V - volume
n - number of moles - 0.206 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 325 K
substituting values in the equation
136 789 Pa x V = 0.206 mol x 8.314 Jmol⁻¹K⁻¹ x 325 K
V = 4.07 L
volume of SO₂ formed is 4.07 L
C is the answer.
It says on the third picture that Bohr refined Rutherford's model by giving distinct orbits for the electrons with distinct radii.
Answer:
Explanation:
Here in Calcium Chloride ionic bond is present in between calcium and chlorine atoms. As we know according to Octet rule calcium have two excess atoms and for matching nearest noble gas electronic configuration. It donate two electrons to gain more stability and form , while chlorine is deficient from one electron to meet nearest noble gas electronic configuration therefore two chlorine atoms accept excess electron from calcium individually and form two ions.
Hence aqueous solution of calcium chloride breaks the ionic bond pairing in one and twoions:
11. ionic charge +1, helium.
12. ionic charge 2-, neon.
13. ionic charge 3+, neon.